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ABSTRACT I 7

The purpose of this research was to investigate the feasi-

bility of designing a programmable digital compensator of suffi-

ciently low cost to be employed in a single high performance con-

trol loop with virtually any analog dynamics in the frequency range

of interest. A compensator with a cost comparable to that of com-

ponents presently used in high performance servomechanisms was

designed and built. The machine was wired to solve linear, con-

stant coefficient, difference equations. The output of the machine

is therefore a weighted sum of past inputs and outputs of the ma-

chine. The inputs and outputs are stored in a magnetostrictive

delay line which is clocked at one megacycle. The desired pro-

gram is selected by inserting the appropriate weighting constants

into a programmable diode matrix° Up to fifteen past inputs and

outputs may be used in the program_ The time between input sam-

ples may also be programmed within reasonable limits.

The compensator was tested with three different forms of

analog dynamics within the two to twenty cycle per second recom-

mended frequency range of the compensator° Significant improve-

ments in performance were obtained in all cases. These test re-

sults, the complete design details of the compensator, and the

sampled-data synthesis procedures that were employed are pre-

sented. __
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CHAPTER ONE

INTRODUCTION TO DIGITAL COMPENSATION

1. 1 Introduction

In the design of large digital control systems, two basic

approaches are currently in use. One approach is to use one

large centralized digital machine to perform all of the required

computations. The second approach is to use many smaller,

special purpose machines to perform the required functions.

The first approach is highly attractive since it allows the

greatest time sharing of equipment and should therefore result in

the simplest overall system. The problems involved in realizing

the full potential of this approach, however, are enormous because

of the wide range of computational tasks that are usually present

in a given system. An inertial guidance system, for example,

must indicate the position and velocity of a vehicle (navigate), and

control these quantities in a closed loop fashion so that the body

follows a prescribed trajectory. The navigation problem re-

quires high accuracy and low speed while the control problem de-

mands high speed with less accuracy. As a result, a digital com-

puter designed to handle both problems is very likely to have an

accuracy-bandwidth product far exceeding that required for either

15
problem.
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A serious fault of the centralized approach is that a

failure in the centralized computer can result in the failure of a

major part of the entire system. In many fields efforts are

therefore being made to develop the full potential of the decen-

tralized approach. For example, avionics systems have been

designed with centralized computers, but heavy emphasis is now

being placed upon the development of decentralized systems so

that an equipment failure is unlikely to result in the failure of

an entire mission.

Although the centralized approach will probably yield the

simplest, most reliable digital systems, many authorities believe

that in the meantime, excellent progress can be made by follow-

17
ing the decentralized approach. It is with this philosophy in

mind that this research was performed.

1. Z Digital Control

In recent years a large amount of engineering effort has

been devoted to the design and development of digital automatic

control systems. This activity has resulted largely because of

two important advantages of the digital control system:

1. Compatibility with the digital computer, and

2. An increase in accuracy over analog techniques.

The first attempts at employing the large data handling

and storage capabilities of the digital computer in the field of

automatic control often involved the placement of digital to analog

and analog to digital converters between the computer and an
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analog control loop. In addition to the disadvantage of having addi-

tional hardware, these converters usually resulted in a loss of

accuracy. With a digital control loop, direct communication with

the digital computer is possible since the command and feedback

data are numerically represented in the loop.

The accuracy of an analog control system is determined

by the precision with which the amplitude of electronic signals

can be represented and detected. Therefore, the accuracy is

ultimately limited by the stability and noise characteristics of the

electronic components that are employed. In the digital system,

where the command and feedback data are represented and com-

pared numerically, an increase in accuracy is obtained by the

addition of logical elements. Since these elements operate at sig-

nal levels far in excess of the noise and drift levels of the elec-

tronic components that are used, the accuracy of a digital control

system is not limited by the accuracy of the electronic compo-

nent s.

A digital control system may be classified as being either

incremental or absolute. In an incremental system, a given change

in the output variable is specified by an electronic pulse. In an

absolute system, the value of the output variable is represented

by a coded number.

An incremental control loop is shown in Figure 1.1. The

incremental encoder, or quantizer, generates a pulse each time

a given increment of change in the controlled variable occurs.
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The pulse occurs on one of two output lines, depending upon the

direction in which the controlled variable has moved. These feed-

pulses are subtracted from the input command pulses so that the

number stored in the counter represents the error between the

desired and the actual value of the controlled variable. This

error is then converted to an analog signal to control the analog

plant. The error is continually updated as feedback pulses occur

so that the error is not sampled, even though it is quantized.

An absolute digital control loop is shown in Figure 1.2.

The output of the absolute encoder is a coded number equal to the

value of the controlled variable. This number is subtracted from

the input command, which is also a coded number, to generate the

error. This error is then used to drive the analog plant as be-

fore. Although this system could also be instrumented to update

the error each time afeedback change occurred, the error is

usually computed at a fixed frequency in order to simplify the

electronics. Therefore, the error in an absolute digital loop is

usually both sampled and quantizedo

The incremental system is inferior to the absolute digi-

tal control system because it is possible to lose the point of

reference for the controlled variable° If a malfunction results in

an incorrect error signal in an incremental system, this error

will remain in the system forever. However, even with this seri-

ous disadvantage, incremental systems are far morewidely
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used than absolute systems because they result in the simplest

hardware.

The accuracy of an unloaded digital control system,

whether it is incremental or absolute, is limited by two factors:

I. The resolution of the feedback encoder, and

2. The null stability of the digital to analog converter
in the forward path of the loopo

Progress in both of these areas has resulted in digital control

loops which exceed the accuracy of the best possible analog sys-

tems by more than an order of magnitude°

l o 3 Digital Control Applications

The use of digital control systems is limited to applica-

tions where the increased cost and complexity are offset by the

advantages described in Section 1o Z. For this reason these con-

trol systems have been used mainly in high performance posi-

tioning servomechanisms. In most of these applications, the defi-

nition of high performance includes high static accuracy (within

four quantum), wide bandwidth (ten cycles per second), and com-

patibility with the digital computer°

In numerically controlled machine tools, for example, the

need for high accuracy is obvious, and a wide bandwidth is always

desired in order to reduce machining time° Also, it is usually

necessary to provide some combination of off-line and real time

digital computational capability in order to automate the burden-

task of transforming engineering drawings into actual command
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information for the servoso 12,22 It is therefore highly efficient,

if not necessary, to use servos which can communicate directly

with this equipment.

Digital control loops are also now widely used for the

gyro loops in inertial guidance platforms. Again, the need for

high accuracy and the desirability of having direct communication

links with the digital guidance computer, has dictated the use of

digital control systems.

These two examples of digital control applications have

been included in order to clearly define the class of control sys-

tems which are under consideration in this thesis. The control

problem usually involves three or fewer control loops which are

part of a much larger overall system.

1.4 Stability of DiGital Control Systems

We have discussed in Section 1.2 the main reasons why

digital control systems are extensively employed. However, the

introduction of digital equipment into the control loop has increased

the problem of obtaining a satisfactory response. The controlled

variable tends to exhibit a ripple in the steady state, and, more

important, stability in the large and a good transient response are

difficult to obtain.

In an incremental system, the steady state ripple occurs

because the analog dynamics is driven by a quantized signal.
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Since the error signal required to balance a given output load

will, in practice, never exactly equal an integral number of quanta,

the error must oscillate with an amplitude of at least one quan-

tum so that the average error equals the signal required to sup-

port the load. If this oscillation is not observed in practice, it

is because friction or some other nonlinearity in the null supplies

an additional force to balance the load. In an absolute digital sys-

tem, ripple is introduced by the sampling process as well as by

the quantization. 21, 24

The large scale stability and transient response are also

adversely affected by the sampling and quantizing processes be-

cause the loop is closed only at the instants in time at which the

error is updated.

1. 5 Compensation o_f_fSingle Loop Digital Servomechanisms

As with any servomechanism, a digital control loop may

be compensated by changing the analog dynamics. However, it is

usually impractical to alter the analog plant, and a compensation

network cannot be located in the feedback loop because of the

presence of the encodero The compensator must therefore be

located between the digital to analog converter and the analog

plant. This results in some serious problems:

1o High power linear amplification will usually be re-
quired to drive the analog plant° This is especially
objectionable with a DC system since it may be
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Z,

.

.

impossible to maintain the null stability that can be

obtained by driving the analog plant directly with the
digital to analog converter°

With an AC system, there is always the problem of

designing a suitable AC compensator,

If, as is usually the case, the compensator must

supply some derivative control, any noise spikes

present in the digital to analog converter output are
acc entuate d.

If a digital stepping motor is used, it is impossible

to place a compensator after the digital to analog

converter since a digital to analog converter does

not exist as a distinct element in the loop; the con-

version is actually performed by the motor.

We are therefore led to consider the possibility of compensating

the system with information that is still in digital form.

Besides the disadvantages involved with employing analog

compensation, we can list several important advantages that can

be obtained by employing digital control:

1. The digital computer program can be easily synthe-

sized to obtain closed loop control systems to meet

a wide variety of performance criteria, which in-

clude integration, prediction, noise reduction, and

no error response to polynomial inputs after a

finite settling time.

Z. The above responses can be obtained regardless of

the analog dynamics in the loop and without any

realizability constraints placed upon the compensa-

tor program other than assuring that inputs precede

outputs.

3. The system can be made adaptive, since the compu-

tational algorithm of the compensator, or the con-

stants within a given algorithm, can be conveniently

changed as operating conditions change.

4. Any degree of computational accuracy is possible.
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These advantages result from the extreme flexibility of a digital

machine in handling complex computations° This flexibility is

obtained, of course, at the expense of additional hardware.

Digital machines which have been previously used to

compensate digital servomechanisms fall into one of the follow-

ing categories :

I. The compensator is of a special type to provide a

particular mode of control with a given type of
system. 2, 9, 19, 23, 30, 31

2. The compensation is performed by a computer

which is also assigned to perform numerous other
tasks. 13

3. The compensation is performed by a computer

which is capable of compensating a large number

of control loops. 14

Special purpose compensators will always find wide-

spread application because of their simplicity and because they

eliminate the problems associated with analog compensation.

They lack the flexibility, however, to realize the many advantages

that can be obtained by employing digital techniques° While ma-

chines in the second category have this flexibility, there are many

small scale applications where they cannot be economically em-

ployedo They also lie outside the design philosophy we have

elected to follow.

Machines in the third category also have the required

flexibility but are too large and expensive to be used for the very

common problem of compensating three or fewer loops.
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The purpose of this thesis was to attempt to design a

digital machine which would fill the gap between the highly spe-

cialized type of digital compensators and the large scale digital

machines which have previously been used.

1.6 Th_._._eSingle Loop Digital Compensator

The decision was made to concentrate on the compensa-

tion of a single control loop, for if an efficient solution to this

problem could be obtained, then one or more loops could be com-

pensated by using individual compensators for each loop. Also,

it was felt that the experience gained in the solution of this prob-

lem would be valuable in obtaining a more efficient solution to

the more common two or three loop problem°

It was decided that the single loop digital compensator

should have :

1°

o

the ability to be programmed to compensate a wide
variety of analog dynamics with different perform-
ance criteria,

sufficient bandwidth to compensate a digital control
loop capable of following a large signal ten cycle
per second input, and,

a cost comparable to the high quality servo com-
ponents that are used in digital control systems°

In order to satisfy the third restriction, it was necessary

to wire a given computational algorithm into the compensator.

Programming is accomplished by changing the constants in this

algorithm. In the prototype machine these constants are stored

in a read only memory whose contents can be conveniently
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altered manually but which cannot be changed by electrical noise.

If ordinary fixed constant compensation is required in a specific

application, this memory could be replaced by a permanent read

only memory. Alternatively, the compensation could be adap-

tively changed upon command by another digital computer pro-

vided this memory was replaced by a read-write memory.

The function of the compensator is to operate upon the

sampled error signal and generate the number sequence which

will cause the analog plant to react in a prescribed manner. The

location of the compensator is shown in Figure i. 3. The time,

T, between successive readings of the error is constant and is

called the sample time. The compensator reads the error, e n,

at time nT and emits an output, Yn ' at time nT, where n is

an integer. If the analog dynamics is linear, then the variety of

closed loop responses mentioned in the previous section can be

obtained if Yn is defined by the following linear, constant coeffi-

cient difference equation: 21

M N

Yn = _" b. Yn-i + _" ao e (I I)
i=l I i=0 i n-i "

The compensator was therefore wired to solve this equation. M

is an integer larger than zero and N is an integer larger than or

equal to zero. The present output of the compensator is there-

fore equal to a weighted sum of M previous outputs of the
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compensator, plus a weighted sum of its present input and N

past inputs.

We can begin to appreciate the full power of this com-

putational algorithm by relating equation (1o 1) to some of the

familiar control algorithms that are employed in analog control

loops. For example, suppose we wish the output of the compen-

sator to be equal to a weighted sum of the error and the deriva-

If the derivative is approximated by (en-en_l)/T,tive of the error,

we obtain:

Ee Ten_l_Yn = K e +K d n (1.2)p n

= (Kp + Kd/T ) en -(Kd/T ) en_l ,

where K and K d are gain constants. This equation is a digitalP

equivalent of the familiar proportional plus derivative form of

control commonly found in analog servomechanisms.

with equation (i._, we see that a ° = K + Kd/T andP

All the other constants are zero.

If we also wish the output of the compensator to be par-

tially composed of the integral of the error, we can approximate

the integral by Yn-1 + T e n to obtain:

Comparing

a I = _ Kd/T.

i



16

e n - en_ 1

Yn = El (Yn-i + Ten) + K e + K d (1.3)p n T

= KI Yn-1 + (KI T + K + Kd/T ) e n - (Kd/T)en_ I ,
P

where K I is the integral gain constant. We now have b I = K I,

a ° = KIT + Kp+ Kd/T, and a I = - Kd/T. This equation repre-

sents a digital equivalent of the proportional plus integral plus

derivative control algorithm often found in analog control loops.

In general, the constants ai; i = O, 1 ..... N, and hi;

i = 1, Z, ..., M, can be selected so that equation (1. 1) will per-

form the functions of integration, differentiation, smoothing, pre-

diction, amplification, and any combination thereof. However,

we shall not revert to these basic operations in order to synthe-

size the constants {ai} and {bj} . The manner in which these

constants are selected, and the wide variety of closed loop re-

sponses which can be obtained, are described in Section go 1 and

Chapters Four and Five. If one wishes to obtain a stronger

appreciation of the capabilities of the algorithm defined by equa-

tion (1. 1), it may be desirable to read these sections at this

time. In passing, we might mention that this algorithm is often

referred to as a linear computer program, and a digital machine

which solves equation (1. 1) is commonly called a linear discrete

filter°
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The next chapter describes some of the major design

decisions that were made in arriving at an efficient design for the

compensator. Photographs of the compensator are shown in

Figure 1.4.
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FIGURE 1.4- PHOTOGRAPHS OF THE DIGITAL 
COMPENSATOR 



CHAPTER TWO

MAJOR DESIGN CONSIDERATIONS

2. 1 The Scalin$ Problem

The first step in the design process was to determine the

range of the constants {ai} and {bj} in equation (1. 1). The con-

stants {ai} are strongly dependent upon the analog gain in the sys-

tem, as is easily shown.

If quantization is ignored, the control loop can be modeled

by the sampled-data system shown in Figure 2. 1. All samplers,

both real and fictitious are synchronous and are assumed to close

simultaneously at a fixed frequency of period T. The fictitious

samplers, which are shown by dotted lines, merely serve to em-

phasize that the indicated z- transforms relate the number sequen-

ces that would be obtained by sampling the corresponding analog

variables in synchronism with the actual sampling.

As explained in Section 3.2, the digital compensator can

be modeled by a machine which computes equation (1. 1) and a

computation delay which must be lumped with the analog dynamic s.

Any time associated with the sampling process may be included in

the computation delay. We can therefore assume that the sam-

plers remain closed for zero time, as must be the case if the z-

transform approach is to yield exact results.

19
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Since the ideal (zero computation time) compensator

solves equation (2. 1), it can be characterized by a pulse trans-

fer function, D(z), which is obtained by z- transforming equa-

tion (1. 1): 21' 24

N
-i

a. z

Y(z) O(z) i=O= = (2.1)
M -i

i _,b. z
i=l i

Y(z) and E(z) are the z- transforms of the number sequences

{yn} and {en} respectively. If the analog plant is linear, the re-

maining dynamics in the forward path of the loop can also be de-

fined by a pulse transfer function which consists of a ratio of

-121,24
Zpolynomials in

E Qz-J + _1 A. z
C(z)_ AG(z) = A
Y-'(TJ - L

-i
I+ _. B.z

i
i=I

(2.2)

Q and L are integers larger than zero and j is an integer larg-

er than or equal to zero. C(z) is the z- transform of the se-

quence {Cn} . If we select the closed loop transfer function,

K(z), to yield a desired closed loop response, we can compute

the compensator transfer function which will yield this response

from the relation between K(z) and AG(z): 21' 24

K(z) (2.3)
D(z) = AG(z)[I - K(z)] '
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K(z) is always taken to be of the form:
D

J
7. z -i
i

K(z) = z -j
i=0

P
1+ 2; d°z -i

ii=l

(2.4)

since this yields the computer program which utilizes the most

recent error sample and hence minimizes the time delay in the

loop. Again, J is an integer larger than or equal to zero and

P is an integer larger than zero. The compensator transfer

function is therefore given by:
N

_o
2; i -i

i=0 "-A-- z
D(z) = M

-i
I-_. b. z

i=l i

(2.5)

The ai's are found by multiplying the numerator of zJK(z) by

the denominator of G(z), and the b.'s are obtained by multiplying
1

the numerator of zJG(z) by the numerator of 1 - K(z). Compari-

son of equations (2. 1) and (2.5) shows that:

1

= --A--• (2,6)

A is proportional to the analog gain in the loop and the constants

{ai} are independent of the analog gain. We can therefore re-

strict the magnitude of the a.'s if we are free to select the analogi

gain. The compensator was therefore designed with the
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assumption that the analog gain could be selected to be any real

positive number in order to avoid the necessity of using floating

point notation to represent the a.'s° This does not really repre-1

sent a compromise since we are merely assuming that we are

capable of assigning the required analog weight to the least sig-

nificant bit of the compensator output. The only function the

exponent in a floating point notation would have is to define which

scale of a rather involved digital to analog converter should be

used, io e. , it would define the proper analog gain. One cannot

reduce the analog gain requirements by providing a large digital

gain. A digital gain merely means that the least significant bit

at the compensator's output must be assigned a larger analog

weight than the least significant bit at the input.

The approximate range of the constants {bi} was obtained

by numerically calculating these constants for various types of

analog systems in various frequency ranges with the aid of a

digital computer. It was found that the magnitude of these con-

stants was almost always smaller than four, so that these con-

stants could also be represented with fixed point notation.

Z. 2 Sample Time Considerations

A sample frequency of four to eight times the closed loop

bandwidth is often quoted in the literature as adequate for com-

puter control applications. 5, 28 This corresponds to a sample

time of 1Z. 5 to Z5 milliseconds for a ten cycle per second servoo
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This, however, is a limiting figure that is made without mention

of the ripple or the error that can be expected when the control

loop is operated at the system bandwidth. It was the author's

opinion that a ten cycle per second input could not possibly be

followed with the high precision and low ripple that is required

in many applications if the input was sampled only four to eight

times during one cycle. It was felt that up to 25 samples during

one cycle was more realistic. This set a speed requirement for

the compensator of one complete computation in four milli-

seconds. The compensator was actually designed with a cycle

time of two milliseconds, since this was more convenient for the

memory which was used. The compensator may therefore be

used in closed loops with up to 120 cycles per second bandwidth

in some applications, although a Z0 cycle per second bandwidth

is probably more reasonable in precision applications.

Sampled-data theory places no restriction upon the selec-

tion of the sample time° Computer programs can be synthesized,

in theory, to provide a finite settling time equal to a fixed num-

ber of sample times regardless of the length of the sample time.

This would imply that one could obtain as fast a response as one

desired, regardless of the analog dynamics, by merely reduc-

ing the sample time. However, as the sample time is reduced,

the loop gain must be increased; the analog plant must be driven

harder in order to respond in the shorter time. A practical limit
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is reached when the analog plant begins to saturate. One will

usually find that a settling time much smaller than the dominant

time constant of the analog plant will be difficult or impossible to

obtain.

Another restriction is placed upon the sample time by

stability and ripple considerations° As the sample time becomes

large, the sampled-data system tends to go unstable and exhibit

a large ripple. It would therefore appear that one should select

the sample time as small as possible in order to control the ripple,

and then allow a large number of sample times for the system to

settle in order to avoid overdriving the plant. However, as the

settling time to sample time ratio is increased, sampled-data

theory demands that the memory capacity of the compensator be

increased. This is illustrated by equation (Z. 3). If K(z) is selec-

-1
ted to be a polynomial in z with a finite number of terms, as is

usually done in order to obtain a finite settling time with poly-

nomial inputs, the number of terms in K(z) increases as the num-

ber of samples required for the system to settle is increased°

The numerator and denominator polynomials of D(z) therefore be-

come longer, which means that more past inputs and outputs of

the compensator must be remembered. Although one could always

abandon the sampled-data approach and approximate the compen-

sator by a continuous element for synthesis purposes, the ability

to synthesize programs capable of providing the flexibility de-

scribed in Section 1o 5 would then be lost.
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A sample time of 1/4 to 1/8 of the dominant time con-

stant of the analog plant was considered sufficiently small to con-

tain the ripple within reasonable bounds. With a sample time in

this r_nge, a settling time approximately equal to the dominant

time constant of the analog plant can usually be obtained without

fear of saturating the plant provided the compensator has a mem-

ory of approximately fifteen words°

A sample time of four milliseconds for a ten cycle per

second bandwidth was established independent of the open loop

dynamics. If this sample time is to equal 1/4 to 1/8 of the domi-

nant time constant of the analog plant, it follows that the first

break frequency of the plant must lie between five and ten cycles

per second. It should not be earth-shattering news to learn that

a ten cycle per second servo should be used in a ten cycle per

second loop! This does not mean that slower analog systems can-

not be used. It merely means that practical difficulties may be

encountered in instrumenting the required driving capability.

In order to compensate lower frequency loops, it is nec-

essary to use a lower sampling frequency in order to maintain

reasonable loop gains. Provisions for increasing the sample time

was therefore incorporated into the compensator. The sample

time may be increased from two to approximately sixteen milli-

seconds in seven equal increments. The compensator is therefore

capable of compensating high performance servomechanisms with
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2 to 20 cycle per second bandwidths. Although lower frequency

loops could always be compensated by further reducing the sam-

ple time, or by employing a continuous approximation, the in-

efficiency of unnecessarily using high speed computation makes

this application unattr active.

2. 3 Coding

In order to obtain the required logical efficiency, natural

binary coding was used throughout the machine with one exception

as explained in Section 3.5.

2.4 Word Length

The word length used to represent the input error does

not depend upon any accuracy requirements. A large input word

length in a properly compensated control loop does not enhance

accuracy since the error is always close to zero when the loop is

operated within its bandwidth. If the error never exceeds eight

quanta, the error is only encoded with an accuracy of one part in

eight regardless of the length of the input word! Indeed, this pre-

sents a very perplexing problem. The null accuracy of a digital

compensator cannot be increased by an increase in word length

because the added significant bits will not be used by the compen-

sator.

The input word length is determined solely by the number

of quanta error one wishes to allow before saturating the compen-

sator. The saturation poi._.t, in turn, is determined by the
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desired response when the closed loop is subjected to large inputs

which contain frequency components exceeding the loop bandwidth;

a compensator which can accept a 128 quanta error will yield a

superior response to a 128 quanta step input than a compensator

which can only accept a 64 quanta error.

In ordinary error-driven digital loops, six to ten bits

are typically used to encode the error. This range was used as

a guide in selecting the word length for the compensator, with the

final decision based upon the degree of simplification that could

be attained by reducing the word length. A word length of eight

bits for the input was selected as an efficient compromise. For

convenience, the output word length was also taken to be eight

bits.

The constants in equation (1. 1) need not be represented

with high accuracy since the analog dynamics are usually not

known with more than five percent accuracy, and the error in the

null (where accuracy is most important) is only represented by a

few significant bits. Six bits, including sign should therefore be

adequate for representing the constants. However, with the in-

strumentation that was employed, the extra hardware required

for an eight bit representation was insignificant. Eight bits were

therefore used as insurance. The smaller constants could then

be represented with greater accuracy and the larger constants

could be represented with accuracy approaching 1 part in 128.
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2. 5 Incremental VSo Whole Word Computation

Numerous papers have been written concerning the rela-

tive merits of incremental and whole word computers in real-

time control applications. 5, 7, 8, 26, 27, 28 Nevertheless, we must

still review this issue in the light of our design problem.

If we restrict M + N in equation (1. 1) to a reasonable

number, let us say fourteen, then the compensator must perform

fifteen multiplications and fourteen additions during each compu-

tation cycle. It was decided in Section 2. Z that a computation

cycle must be completed in four milliseconds. Word size was set

at eight bits including sign in Section 2.4.

A serial incremental machine with circuits in the 100 KC

range would be capable of meeting the above requirements. With

a whole word machine one would either have to go to higher speed

circuitry or parallel operation. The incremental machine is cap-

able of the higher iteration rate because it only computes the

change that occurs in a given variable from one iteration to the

next, while the whole word machine must compute a completely

new value. Assume, for example, that we wish to compute the

product of a constant, c, and a variable, E. The simplest type of

incremental machine, the DDA (Digital Differential Analyzer), 10 is

designed on the principle that the value of the variable during the

present iteration, E n, does not differ from the value of the vari-

able during the previous iteration, En_ 1, by more than one
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quantum. Therefore, in order to form the product CEn, the DDA

need only add (or subtract) the constant c to (or from) CEn_l,

if the variable E has changed since the previous iteration. If

E hasn't changed, then the DDA need do nothing. The DDA can

therefore perform the multiplication in one add time. The sim-

plicity and speed of the incremental machine are therefore ob-

tained by severely limiting the amount that the input and computed

variables can change during one cycle° This is a severe dis-

advantage in high speed real-time control applications. The out-

put of the compensator must change far more than one quantum in

four milliseconds if we wish to follow a ten cycle per second input

of any reasonable amplitude. Also, if any reasonable response is

expected with inputs which exceed the ten cycle per second range,

such as with step inputs, both the input and output of the compen-

sator must be allowed to change by large amounts from one com-

putation cycle to the next. We can therefore say that for real

time control applications, a statement of the computational fre-

quency of a digital machine is completely meaningless unless

accompanied by a statement definin_ the amount the input and out-

put variables can chanse durin_ one computation cycle.

The time required by an incremental machine to move

from whatever state it is in to a new state demanded by a sudden

change in input variables is called the slewing time of the ma-

chine. 5, 28
This term is usua117 not used in conjunction with
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whole word machines because the slewing time of every whole word

machine is one computation period°

Since the slewing time of a DDA is far too large for most

real-time applications, many variations of the DDA have been

designed and built in order to reduce the slewing time. Two

methods have been used:

1. The increment size of a variable is increased as the

change in the variable during one cycle becomes
large. 5, 27, Z8

2. The machine is designed so that changes in the vari-
ables during one cycle of more than one increment
are processed. 14

In the first method accuracy is sacrificed when variable changes

are large, and the computation frequency is reduced since old

and new values of the variables must be compared. The slewing

time of the whole word machine may be approached, but the cost

of a whole word machine is reached long before the slewing time

Z8
of the machine is approached° The second technique, when car-

14
ried to a limit, evolves into a whole word machine°

Because compensator performance suitable for all ten

cycle per second applications was desired, the slewing capability

of a whole word machine was considered essential. Since pre-

vious efforts had shown that this objective cannot be economically

attained with incremental machines, the obvious course of action

was to attempt to design a whole word machine with a sufficiently

high iteration rate.
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It was felt that a high speed serial whole word machine could pro-

vide an economical solution for two reasons. First, the logical

economy of a DDA is effected mainly by the arrangement of data

in a serial memory (magnetic drum) so that each item in stor-

age is accessible at the time it is required by the computation.

This same economy can be realized with a whole word machine

when the computational algorithm is restricted to equation (1. 1). 6

Second, high speed serial machines are now both practical and

economical. At the present time, the cost of highly reliable dis-

crete semiconductors suitable for use in ten megacycle circuits

cost only twice as much as the Z00 KC variety, and recent ad-

vances in integrated circuit technology indicate that, within a

few years, ten megacycle integrated logic modules will be avail-

11
able for little more than contemporary transistors. Any reasons

for restricting designs to low frequency circuits are therefore

rapidly dis appe ar ing.

The slewing time of the DDA could also be reduced to

acceptable limits with high speed circuitry by merely increasing

the iteration rate. This could also lead to a highly efficient de-

sign for high speed control applications. All of the logical sim-

plicity of present DDA's would remain intact; one would merely

have to trade the magnetic drum for a delay line and use high

speed circuitry. If this approach was followed, however, the

compensator would appear as a continuous element in the control
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loop, because in order to program equation (1. 1) on a DDA, the

DDA must generate an output after each iteration. Z1 The serial,

whole word design was pursued because of a reluctance to leave

the sa_npled-data approach.



CHAPTER THREE

SIMPLIFIED TIMING AND ORGANIZATION OF THE DIGITAL
COMPENSATOR

3. 1 Notation and Definitions

The operation of any sequential machine may be des-

cribed by a sequence of register transfers where a register is

defined as an ordered collection of Boolean variables. However,

this inclusive a definition is not required here. In this paper a

register is defined as an ordered collection of two or more bi-

nary cells or binary memory elements. When not explicitly

stated otherwise, the memory elements of a given register will

be numbered from left to right, starting with zero. The name of

each register will have the prefix r to distinguish registers from

single Boolean variables.

In the course of describing any sequential machine, one

will usually encounter Boolean variables which are functions of

the state of some register, rX. One such function which is very

common in the control logic of a sequential machine is defined as

follows: Si(X ) = 1 if and only if rX is in state i0 In order to

simplify notation, we shall also refer to state i of rX as Si(X ).

The precise meaning should be clear from the context of the

statements.

34
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Another function worthy of special definition is defined

as follows: Ci(X ) = 1 if and only if the ith memory element of rX

is in state 1. Also, in order to simplify notation, Ci(X ) will often

be used as the name of the ith cell of rX.

When we are dealing with a single memory element, we

shall also only use one symbol for the name of the element and for

the function which assumes values equal to the state of the mem-

ory element.

B. 2 Sequencin 8 the Variables (Delay Lin....._eTiming)

The most significant logical simplification that is ob-

tained by restricting the computational algorithm of the digital

compensator to a linear program is that a sequential access mem-

ory may be used without sacrificing computational speed. The

sequential nature of the computation allows one to write informa-

tion into memory in such a manner that it appears at the read head

exactly at the time it is needed. The obvious selection for a serial

memory with the required capacity was a delay line.

The location of past inputs and outputs in the delay line,

the manner in which new information is added to the memory, and

the manner in which time indexing is accomplished is shown in

Figure 3.1. Information is shown shifting from left to right. For

clarity, the special case of a linear program containing seven

input samples is shown (N=6) and five output samples (M=5) is

shown.
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The delay line holds fifteen words; each word consists of

one sample of either the input (en_i) or the output (Yn_j) of the

compensator, Note that the constants associated with the com-

puter program are not stored in the serial memory as is usually

13 14
done with magnetic drum real-time computers. ' This was

done for two reasons:

1. The constants must be stored permanently° If they

were stored in the delay line, they would be sus-

ceptible to alteration by noise. One short transient

could then permanently change the linear program.

2. Control logic for loading constants into the delay
line is eliminated.

Each line in Figure 3. 1 illustrates the state of the delay

line at a particular instant of time. Each line is labeled with a

state of control register, rB° This register switches to state

S.(B) at the instant that the delay line reaches the state illustrated
1

by the line labeled Si(B ) and remains in state Si(B ) until the next

illustrated state of the memory is reached. For example, the

memory reaches the state shown in the first line just as the con-

trol register switches to state So(B ) . rB remains in this state

until the second line is reached, at which time it changes to state

SI(B).

Just before the control register switches to state So(B ) ,

a computation has been completed and the output, Yn' has been

transferred from the accumulator (rA) to the hold register. The

word which emerges from the delay line when S (B) = 1 is an old
O

error term which no longer is used in the computation. This
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word is discarded as the compensator output is inserted into

memory. This output is now called Yn-1 since it will be used

to compute the new output, yn o rA is then cleared to zero.

In general, old error terms which are not used in the

computation will emerge from memory during the next few con-

trol states° These words are multiplied by zero and recirculated.

(This processing yields the simplest logic. ) The computation does

not actually start until state S15_(M÷N)(B) is reached. While

control is in this state the oldest error term to be used, en_ N,

emerges from memory and is multiplied by a N . The product is

generated in an incremental manner. As each bit emerges from

memory, the increment it contributes to the product is computed

and added to rAo This enables each bit to be immediately re-

circulated and eliminates the need for a buffer register between

memory and the arithmetic logic.

The more recent error terms are then processed in the

same manner (oldest terms first) until state S15_M(B ) is reached°

At this time rA has accumulated

N

a. e
i=l i n-i

During state S15_M(B ), an old output term which is no

longer used in the computation leaves the delay line and is dis-

carded° The new error term, e n, is written into memory as the



39

product a° en is generated. Therefore, when the control regis-

ter switches to state S16,M(B), rA has accumulated

N
Y.. a.e

i=O 1 n-i

the part of the output contributed by the error terms.

During state S16_M(B), the oldest output value to be used

in the computation emerges from the delay line, followed by the

more recent outputs. The products b.2 Yn-j are formed as above

while the outputs, Yn-j' are recirculated. When state S15(B ) is

left, control returns to state So(B ) with

N M

ai en-i + _" bi Yn-i = Yn (1. 1)
i=O i= 1

in rA. Yn is transferred to the hold register and a new compu-

tation cycle begins. Upon return to state So(B ) , all terms are

indexed backin time since a new computation is starting.

It should be clear that N and M must satisfy the relation

15 - (M + N)> I

or M+N< 14. (3.1)

In other words, no more than fifteen terms may be used in the

linear program.

Note also that there is a significant computation delay

between the time that the input is sampled and the output is
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generated. In the preceding discussion we have labeled the vari-

ables as though the output is generated immediately after the in-

put is received. Equation (I. l) therefore describes the operation

of an ideal machine which has no computation delay° The opera-

tion of the compensator, however, is identical to the operation of

a machine which computes the output in zero time, and then waits

for (I - A)T seconds before emitting the output, where (i - A)T

is the computation delay (0 < A < I). The compensator may

therefore be modeled as a machine which realizes equation (l. l),

followed by a delay of (i - A)T seconds. The linear program may

therefore be synthesized by assuming that there is no computation

delay associated with the compensator, provided a time delay of

(i - A)T seconds is added to the analog dynamics already in the

control loop.

3.3 Varying the Sample Time

The sample time is varied by following the control se-

quence SI(B ) through S15(B ) for some fixed number of iterations

before returning control to state So(B ) . The number of itera-

tions is programmed with a switch as described in Appendix t3.

If the number of iterations of the basic computation

cycle described in Section 3.2 equals p, then the variables must

be multiplied by the constants {ai/P) and {bi/P) instead of {ai}

and {bi) during each iteration°
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The first time that state SI5_M(B ) is encountered after

leaving state S (B), the input to the compensator is multiplied
O

by a /p as before. For the remaining iterations, however
O

a /p must be multiplied by the delay line output, not the com-
O

pensator's input, while the delay line output is recirculated.

Examination of Figure 3. 1 will show that the sample

time, T, is given by:

T = T R (1 + 15p) (3.2)

where T R is the time required to read one word and p is the

number of iterations that are programmed. For convenience,

the sample time is tabulated in Table 3.1 for the number of

iterations which may be programmed (T R = 0. 128 milliseconds. )

3.4 Computation

We are now in a position to write an explicit equation

for the computation delay.

that

Computation delay

Since

we obtain

Examination of Figure 3.1 will show

(1 - A)T = T - (15-M)T R . (3.3)

T = T R (1 + 15p), (3.4)

14 + M_ (3.5)(1 - A)T = T (1,5Pl+ 15p '°

The delay is written in terms of a parameter, A where

0 < A < l, since this is the manner in which the dead time is

usually introduced when applying the advanced z- transform.
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SAMPLE TIME
(MILLISECONDS)

I

2.04B

NUMBER OF
ITERATIONS

I

3.968

5.888

7.808

9.728

11.648

1:5.568

15.488

2

3

4
5

6

7

8

TABLE :5.1- POSSIBLE SAMPLE TIMES
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The overall pulse transfer function consisting of the analog plant

dynamics, the zero-order hold, and the computation delay may

then be obtained from tables of advanced z- transforms° The

which appears in these tables is obtained fromparameter, A,

equation (3. 5):

15 -M

= 1 + 15p (3° 6)

It will be recalled that M is the number of past outputs which are

used in the linear program, and p is the number of iterations of

the basic computation cycle which are programmed.

3.5 Arithmetic

As has already been explained, division is not required

of the arithmetic unit. Multiplication and addition is performed

with a binary operational multiplier and bidirectional counter

(BDC) which is called rA. The arrangement is shown in Figure

3.2.

The operation of the operational multiplier is described

20
in Appendix B and elsewhere. The binary multiplier accepts

an input frequency, f; a number K. coded in natural binary;
1'

and emits a frequency, K.f. If this frequency is counted over a1

fixed time base, a coded number proportional to K. is obtained.1

If the time base is now made proportional to another number,

Xn_ i, a number proportional to K.X . is obtained.1 n-I
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Obviously K. is related to a weighting constant and
I

X . is either a past input or output of the compensator in the
n-I

specific application at hand. The constants are stored in a

programmable diode matrix (see Appendix B). The constants

are sequentially gated into the operational multiplier so that K.
i

controls the output frequency of the multiplier at the time X
n-i

is emerging from the delay line.

The time during which the output frequency is counted

is controlled with very little logic because of the manner in which

X . is coded. The first bit to emerge from the delay line is the
n-I

sign bit. This bit is exclusive OR'ed with the sign bit of K. to
I

define whether the accumulator (rA) is to count forward or back-

ward° The remaining bits define the magnitude of Xn_ i. A

weighted code is not used. The magnitude of X . is equal to the
n-i

number of l's in the delay line immediately following the sign bit.

For example, + 60 would be stored as a "zero" followed by sixty

"ones". Therefore, the required product is formed by merely

counting the output of the operational multiplier during the time

that "ones" are emerging from the delay line (excluding, of

course, the sign bit).

One simplification which results from this instrumenta-

tion lies in the fact that the output, Yn' appears in a BDCo To

insert this number into the delay line, it is only necessary to

count the BDC to zero with the delay line clock as "ones" are
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written into the delay line. For clarity, the logic required for

this operation is not illustrated in Figure 3.2.

The manner in which an input sample, en, must enter

the machine is now clear; the error must appear in a counter

which can be counted to zero as "ones" are written into memory.

This counter is not shown as part of the compensator for two

reasons:

Io It will usually be possible to efficiently encorporate

this counter into the circuitry which forms the error

in an absolute digital servo°

2. This counter does not appear in the test loop that
was instrumented° The A/D converter that was

used was of a type which generates the digital out-
put in a bidirectional counter°

This method of computation offers one more simplifica-

tion which is not immediately obvious. A binary counter, re-

quired in the control logic to clock the delay line, can also be

used for the scalor in the binary operational multiplier° The

entire arithmetic section, therefore, consists of only the accumu-

lator, rA, and some combinational circuitry. Virtually every

other multiplication scheme, whether serial or parallel, would

require at least one more register in addition to an accumulator

and combinational gating.

The operational multiplier can only generate a frequency

which is less than the input frequency. In other words, I Kil must

be less than one. If f is set equal to the delay line clock fre-

quency, C M, a little reflection will show that multiplication of
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Xn_ i by a constant larger than one is not possible when the smal-

lest sample time is programmed. It was shown in Section Z. 1

that the constants which weight the inputs to the compensator can

always be made less than one by using a sufficiently large analog

gain in the control loopo The constants which weight past outputs

of the machine, however, may be larger than one. This diffi-

culty was overcome by letting f = 4 C M. Multiplication by con-

stants as large as four is then possible when the smallest sample

time is used; larger constants are possible with larger sample

time s.

The frequency 4 C M (equal to four megacycles) was

selected as a compromise between maximum machine capability

and minimum hardware. A higher frequency would require more

and faster circuits. The numerical range of the constants which

would have to be programmed in order to realize the transfer

functions required to compensate various types of analog sys-

tems in various frequency ranges were synthesized with the help

of a digital computer; it was found that multiplication by con-

stants larger than four would not be necessary for the vast ma-

jority of cases.

Increasing the input frequency helps to alleviate the one

important disadvantage of this computational method° The output

of the operational multiplier does not consist of evenly spaced

pulses; it is only the average frequency over one cycle of the

binary scalor within the multiplier which equals K.f. The
1
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instantaneous frequency is only an approximation to K.f. Since
1

the output frequency is not accumulated for an integral number

of cycles of the scalor (except for some special values of Xn_i)

the multiplication is not exact.

18
It has been shown that this error can be reduced if a

desired output frequency, Kif, is generated by first forming

2nK.f with an operational multiplier which has an input frequency
1

of znf and then dividing this frequency by 2 n with a rood 2 n coun-

ter. With an input frequency of 4 C M, it is possible with most

programs to generate frequencies 2 n times higher than necessary

and use the first stages of rA as a rood 2 n counter to divide the

frequency. The output, Yn' is then taken from the higher order

stages. More will be said about this later°

3.0 Control lo_

We are now in a position to understand most of the re-

quirements of the control logic. The logic must incorporate the

following circuits :

1. A counter to keep track of each bit within a word

in memory.

2. A register (rB) with sixteen distinct states,

So(B )..... SI5(B), to define each word.

3. A counter to control when rB is to revert back to

state S (B).
O

4. A precision oscillator to clock the delay line and
the control circuits.

The control logic is shown in Figure 3.3. A frequency,

foui tiix_es larger than the delay line clock (CM) frequency,
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synchronized with C M was needed in the arithmetic unit. A four

megacycle oscillator was therefore counted down to generate the

one megacycle clock for the memory.

In designing the machine it was conceptually easier to

consider C M as the master clock since the delay line and most

other circuits are clocked with C M. We shall therefore call C M

the master clock throughout this report°

In keeping with this convention, it is convenient to de-

fine a register, rM R, consisting of the seven stages of rM fur-

thest to the right° rM is a nine bit binary counter which accumu-

lates the four megacycle oscillator output. Therefore, rM R is a

seven bit binary counter which is triggered by C M. Each over-

flow from this counter signifies that the next bit out of memory

is the first bit of a new word° This overflow is used to change

the state of rB. rB is a shift register with feedback to the first

two stages. The function that is shifted into the first two stages

is obtained from the feedback network while the remainder of the

register operates as a normal shift register.

The operation of rB is very similar to the operation of

a ring counter; only one of the output functions,So(B ) ..... S15(B ),

equals "1" at any given time. The register is started with

So(B ) = 1 and this "1" is shifted along by succeeding overflows of

rM R. When the "1" is shifted out of the register, rW is incre-

mented to remember the fact that one iteration of the
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computation cycle has been completed. Also, a "I" is shifted

into either Co(B) or CI(B ) depending upon the number of itera-

tions that have been programmed° This "I" is then shifted

along as before. Whenever rB leaves state $15(B), it is sent to

S (B) if the count in rW equals the number of iterations which
O

have been programmed; otherwise it is sent to state SI(B ),

So(B ) is fed back to reset rW to a count of "I '_ whenever rB

enters state So(B ).

A sixteen state shift register was used instead of a four

bit counter with gating for two reasons:

1. It has been shown that this solution is more efficient

in the total amount of logic required. 16

2o It would be difficult to drive the number of gate legs
required in the four bit counter solution°

The control signal S15_h/I(B ) which, in conjunction with

SI(W ), defines the time at which the latest error is to be read

into memory, is obtained by selecting the appropriate output

function of rB with a rotary switch. SI(W ) is "1" only when

rW = 1 and therefore defines the time during which the first itera-

tion of the computation cycle is being processed.

The mysterious sequential circuit appearing in Figure 3o 3

supplies timing signals for other miscellaneous operations and is

discussed in Appendix B.

3. 7 Summary of the Compensator Design

The purpose of this section is to unify the foregoing
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presentation and to add a little more detail. The complete design

is shown in Figure 30 4o

Operation of the control logic should be clear° Note,

however, that the complements of the control levels SI(B), .oo ,

S15(B ) are required to gate out the constants K." the zero side
1'

of rB is therefore used°

The binary operational multiplier does not appear ex-

plicitly in Figure B. 4; it is composed of rM and the AC coupled

combinational cir cuito

The combinational circuit which forms the sign of the

product K.X . is more complicated than that shown in Figure
1 n-I

3. Z because this gating must select the proper bit in memory

and must also select the sign of the latest input sample at the

appropriate time.

It should not be assumed from Figure 3.4 that the inputs

to the various combinational circuits are always in their as-

serted form° The illustrated inputs merely serve to define the

functional dependence of the circuits.

Some circuits have not been shown. These are the com-

binational circuits which define the operation of the compensator

in the event it saturates and the circuits which generate the timing

signals for the analog to digital converter and zero-order hold

network.
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A third (and final) program switch, used to set the gain,

has been introduced. This switch has six possible settings. At

setting number one, the first seven flip-flops of rA, C (A) .
O ' " ° '

C6(A ) are used for the magnitude of the output; at setting num-

ber two, flip-flops CI(A ) .... , C7(A ) are used, etc.

Since the output is not necessarily taken from the initial

stages of rA, the gated clock which counts the output toward zero

as the output is inserted into the delay line must enter the counter

on a trigger input which bypasses the initial stages. The gain

switch is also used to select the appropriate trigger input as

shown schematically by the dashed line within the gain switch in

Figure 3.4.

The feedback loop for writing the present output, Yn' into

memory is now shown. This loop consists of a combinational

circuit which informs the memory input when rA R has been counted

to zero by the master clock, C M. rA R is defined to consist of

the cells of rA which form {ynl and all of the cells of rA to the

right of these cells.

3. 8 Programming th_.._eCompensator

It was shown in Section 2. 1 that the compensator's trans-

fer function can be written as

N a. -i
1 z

_ = D(z)= i=0 "A-M
-i

1 -_, b.z
1i=l

(z.5)
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The various constants in this equation are defined in Section

2.1.

It is now convenient to write equation (2° 5) in difference

equation form:

N M

Yn _; _"= I e + _ b. Yn (3.7)
i=O _ n-i i=l 1 -i

The problem is to find the relation between the constants in equa-

tion (3.7) and the constants {Ki} which are actually inserted into

the diode matrix memory. Recall that these constants serve as

inputs to the operational multiplier and must therefore have a

magnitude smaller than or equal to one.

The diode matrix has fifteen rows, numbered one

through fifteen, in which the constants {Ki} are stored. The

matrix was wired so that rows one through fifteen are gated in

that order onto the input of the operational multiplier during each

iteration of the computation cycle. If we now establish the con-

vention that K. will be stored in row i, then it should be clear
1

from Figure 3.1, which defines the order that the stored samples

emerge from memory, that the number

N M

Z] 4K15-M-i en-i + _" 4K16-i Yn-i
i=0 i=l

is accumulated in rA during one iteration of the basic computa-

tion cycle. The constants K 1 through K15_M_N_I are assumed
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to be zero° The factor 4 arises because the input frequency to

the operational multiplier is four times that of the delay line

clock. If p is the number of iterations of the basic computation

cycle that have been programmed and the gain switch is at setting

then the first seven cells of rA define ,,lYnl and wenumber one,

obtain:

N M

= _. 4p K 1 e + Z 4p (3° 8)Yn i=0 5-M-i n-i i=l Kl6-i Yn-i"

If the gain setting is two, then the output of the operational multi-

plier is divided by two before it enters the output register. We

therefore have

N M

Yn = _ (_'_) KI5-M-i en-i + _ (_]_) Kl6-iYn-i"
i=0 i=l

(3.9)

As the gain setting is increased, the output of the operational

multiplier is further divided by powers of two before it enters the

output register. We therefore obtain the relation

N lV[

yn= Z Z__I K 1 e +Z _i=0 5-M-i n-i i =_I Kl6-i Yn-i "

(3.1o)

K is the gain setting and may assume values one through six.

we make the definition

KD Z 3 -K= p ,

If

(3o11)
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then equation (3. 10) becomes:

N M

Yn = Z K DKI5_M_ie " + Z KDKI6-iYn-i " (3. 12)
i=0 n-1 i=l

the digital gain. Comparison of equations (3.7)We shall call K D

and (3. 1Z) yields the expressions for the constants {Ki} :

{%°

K15 = _D i= 0 1, N, (3. 13)-M-i ' .....

and b.

K16-j = _D ' j = 0, 1 ..... M. (3. 14)

The remaining constants, of course, are zero. The digital gain,

K D, is first selected so that

b_D < 1, for all j (3. 15)

and then the analog gain is selected so that

a_D < 1, for all i. (3. 16)

The constants {Ki} are then inserted into the proper rows of the

diode matrix. Unless the constant equals +- 1, its magnitude is

encoded in seven bit natural binary with positive numbers denoted

by binary "zero" in the sign bit. The numbers are then inserted

from left to right with the sign bit in column A, the most signifi-

cant bit in column D, and the least significant bit in column H.

The presence of a diode corresponds to binary "one". If the con-

stant is +- 1, the sign is programmed as above, but columns B



58

through H are left open and a diode is inserted into column J.

This bypasses the operational multiplier and gates its input fre-

quency directly into rA.

The maximum digital gain, KDMAX. is an important

number because it is equal to the maximum constant, bj, which

can be programmed. KDMAX is a function of p:

KDMAX = Z(3-1)p = 4p. (3.17)

Therefore, a wider range of constants may be programmed when

larger sample times are used.

The programming procedure may now be summarized:

I. Select a sample time commensurate with the domi-

nant time constants of the analog dynamics.

Z. Synthesize K(z).

3. Select t_e largest gain setting (smallest KD) such
_ -- 1, o..that|b_[/K D< 1, for j , M.

J

4. Select smallest analog gain such that I il/ D<_l
I I

for i = 0 ..... N.

5. Insert the constants bj/K D and ai/AK D into the diode
matrix.

6. Set the past input switch to position 15-M.

7. Set the sample time switch. The numbers on the

dial plate correspond to the sample time rounded

off to the nearest even integer.

The smallest digital gain possible should be used since

this will result in the maximum "smoothing" of the operational

multiplier output frequency and hence will yield the highest com-

putational accuracy. This also enables the constants which con-

tribute significantly to the output to be encoded with minimum
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truncation error, since these constants will then lie close to one.

Any real number with a magnitude between one and 100/128, for

example, can always be represented by a number which is accurate

to within . 05 per cent. Real numbers with a magnitude smaller

than 10/128 _, however, may have to be encoded with errors in

excess of 5 per cent.

The smallest analog gain which satisfies equation (B. 16)

should be used also to ensure that the input constants _i/AK D are

not too small for accurate encoding. A small analog gain is also

desirable, of course, to minimize instrumentation and stability

problems in a practical control loop.

Another inaccuracy which results from programming

small constants has not yet been mentioned. When a constant is

multiplied by a small number from memory, the contributions of

the latter stages of rM to the output frequency of the operational

multiplier will not be obtained. This happens because the output

of the operational multiplier is only monitored for a small time

if the number in memory is small. The resultant error is small

if the dominant weighting constants are programmed as numbers

close to one. If even the largest constants are programmed as

small numbers, however, the compensator input would have to

become quite large before an output from the multiplier would be

obtained, resulting in a large dead zone.



CHAPTER FOUR

SYNTHESIS TE CHNIQUES

4. 1 Introduction

The main purpose of this chapter is to present those

results from sampled-data theory which are directly applicable

to the problem at hand. These results are stated, with con-

densed developments given where results in slightly different

form from that stated in the literature were desired. Unless

explicitly stated otherwise, the simplifying assumption is made

throughout this chapter that the system is sampled but not quan-

tized.

Although the mathematics involved in sampled-data

theory is very straightforward, it does tend to become lengthy,

as do the resultant equations. The intuitive grasp of system

behavior, essential in fixing the many degrees of freedom in

order to effect the proper trade-offs required to obtain a satis-

factory response, is easily lost. Another important function of

this chapter is to develop an intuitive grasp of the synthesis

problem.

4. Z Restrictions upon the Selection of the _ Loop Pulse
Transfer Fun_tion-_l_, Z4

The linear program for the digital compensator is

60
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obtained by inserting the desired open loop pulse transfer func-

tion, K(z), into equation (2.3). The selection of K(z) is not com-

pletely arbitrary, but is restricted by the analog dynamics.

There are three restrictions:

-1
1. The lowest power of z in the numerator of K(z)

must be larger than or equal to the lowest power of
z -1 in the numerator of G(z).

2. K(z) must have as its zeros all of the zeros of G(z)
which lie on or outside the unit circle in the z-plane.

3. 1-K(z) must have as its zeros all of the poles of G(z)
which lie on or outside the unit circle in the z-plane.

The first restriction assures us that the compensator's

transfer function is physically realizable. When this constraint

is satisfied, the compensator need not deliver an output before it

1
receives an input. When the lowest power of z" in the num-

-1
erator of K(z) is taken to be equal to the lowest power of z in

the numerator of G(z), the most recent error sample is utilized

by the compensator. Since this minimizes the delay through the

forward path of the loop, we shall always make this selection.

The last two restrictions assure us that the compensator

is not called upon to cancel poles and zeros of G(z) which lie on

or outside the unit circle. Imperfect cancellation of these zeros

and poles will usually lead to closed loop instability.

If the analog plant is stable, as is always the case with

practical actuators, the last restriction can be stated more ex-

actly. In this case, G(z) will not have poles outside or on the

unit circle, with one exception. It is very common to have a
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single or multiple pole at z=l, since a pole at z=l corresponds

to integration. We can therefore replace the last restriction with

the following statement:

If G(z) represents a stable system and has a pole of order

i at z=l, then 1-K(z) must be of the form (1-z-l) i P(z -1)

where P(z -1) is a polynomial in z -1

Z1, 24
4.3 No Ripple Response

Usually a zero-order hold network is used in a digital sys-

tem for ease of instrumentation and to obtain high null stability.

If a zero-order hold network is used, then it is clear that a ripple

free response to a polynomial input is possible only if the analog

plant is capable of generating the required polynomial with a con-

stant input (the output of the zero-order hold). For example, in

order to generate a smooth ramp, an integration must be present

in the analog plant°

Besides the restriction on the analog plant, K(z) must be

restricted so that its zeros include all of the zeros of G(z). Of

course, the three restrictions upon K(z) which were listed in the

previous section must also be satisfied. Note, however, that the

second restriction is automatically satisfied when all of the zeros

of G(z) are also zeros of K(z).

In the above discussion, the problem has been simplified

by assuming that the zero-order hold network is capable of sup-

plying any real constant output. In a digital control loop, however,
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the output of the hold network is restricted to a set of discrete

values. Unless one of these values is the input that is required

to generate the required polynomial to within the quantization

error, we can expect to see at least one quantum ripple on the

output even though the above constraints have been satisfied.

4.4 Constraint Equations for Smoothing and Prediction with

Finite Settling Tim_.___e_r

The three basic operations of prediction, smoothing,

and differentiation can be performed with a linear computer pro-

gram of the following form:

J

= r (4.1)
Cn i=O i n-j -i '

where c(t) is the output and r(t) is the input. J, n, and j are non-

negative integers. This formula is called a rough history, or

finite memory program, because only a fixed number of past

input samples need be remembered in order to generate the out-

put°

If the input is a polynomial for t> 0, the constants {_i}

can be selected so that for any real number, _, the equation

cn = rn+ _ (4. Z)

is satisfied for every n larger than or equal to N + j, regardless

of the input prior to time zero or the initial conditions. It is in

this sense that we speak of a finite settling time° If _ is larger

than zero, the program predicts the input.
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It is possible to select the constants (_,i} so that the

input is smoothed for any value of _ while equation (4. Z) is sim-

ultaneously satisfied. This process is described in the next sec-

tion. The constants may also be selected so that the output equals

the derivative of the input in the same sense as described above

(p. 127, ref. Z1), but we shall have no need for this function. Let

us therefore return to the problem of selecting the constants {7i}

so that equation (4.2) is satisfied. We begin by combining equa-

tions (4.2) and (4. 1):

J

rn÷ _ = _ _. r (4. 3)i=0 1 n-j -i

If r(t) is a polynomial of degree q, a Taylor series expansion of

r(t) about the point t = nT - jT yields:

r(t) = r(nT - jT) + q (t- nT + _T) m dmr (nT - jT) (4.4)m!
m= 1 dt m

Of course, the summation in equation (4.4) is absent if q is zero.

Equation (4.4) implies that

q (8 + _T) m d m
rn÷ oP = r(nT - jT) + Z "rT r (nT - iT) (4. 5)m!

m= 1 dt m

and

q (_iT) m d m
= r (nT - jT) (4.6)rn_j_ i r(nT - jT) + _. m[

m= 1 dt m

Combining equations (4.3), (4.5), and (4.6), we obtain:
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q
r(nT-jT) + _ (pT + )T) TM

m!
m = 1

J E q7 i (nT - jT) + Z
i=0 m=l

------dmr (nT - jT) =
dt TM

(-iT)ram[ dmrdt_ (nT- jTI_., 7)

_. 7 - r(nT - jT)
i=O

Eq[(JE 7i('iT)m / -m= 1 i= 1 m I

+

(4.8)
-I

_T)TM ] dm----r (nT - jT)= 0.+
m! 3 dt TM

If this equation is to hold for every polynomial of degree q, the

quantities in brackets must be identically zero:

E' 17 i - 1 = 0,
i=0

_. - (_T + iT) m
m!

i=l
= 0, (4.9)

m = I, 2, .... q.

We therefore obtain the following set of equations:

J

_. 7i = 1
i=0

J

_. iTi = - (_ +j),
i=0

m=l

J

_" iq _i = (-t)q
i=0

(_ + j)q, m= q.
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Therefore, if we wish to satisfy equation (4.2) for an input poly-

nomial of degree q, the constants {_i} in equation (4. 1) must

satisfy the q + 1 equations in equation set (4. 10). Satisfaction

of constraints (4. 10) is also a sufficient condition to ensure the

validity of equation (4° 2) for polynomial inputs, since we can

begin with equation set (4. 10) and perform, in reverse order the

steps that were followed above.

Since we must have at least as many unknowns as equa-

tions, it follows that we must have

J > q. (4. 11)

If J equals q, the constants are uniquely determined by solving

equation set (4. 10). When J is chosen larger than q, the extra

degrees of freedom can be fixed so that equation (4. 1) also per-

forms the function of smoothing.

If equation (4° 1) represents a closed loop transfer func-

tion, J must usually be chosen larger than q, where q is the

highest order polynomial that the closed loop must follow. It is

then possible to satisfy equation set (4. 10) and use the extra de-

grees of freedom to satisfy the additional constraints imposed

upon the {Ti} by the restrictions discussed in Sections 4. Z and

4.3. Once all of these constraints are satisfied, we are free to

impose any additional constraints until the number of constants,

J + 1, equals the total number of constraint equations. These
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additional constraints may, for example, be selected to minimize

noise or to obtain some desired transient response.

Since equation (4. 1) yields a finite settling time, the

closed loop transfer function, K{z), is usually taken to be of the

form obtained by z- transforming equation {4. 1):

K(z) z- j J -i- - z z (4.Iz)
i=0

We therefore see, from considerations presented in Section 4.2,

that in this particular application j will equal the lowest power

-i
of z in the numerator of G(z). This is the reason that the

parameter j was not set equal to zero in equation (4. 1). If the

selection of j was arbitrary, it would always be chosen to be

zero, the smallest possible value which yields a physically

realizable equation. A positive j serves no useful purpose and

only increases the time delay through the filter.

The case _ = 0 is of prime interest since this corre-

sponds to perfect reproduction of the input signal at the samp-

ling instants.

J

i=0

J

i=0

For this case, equation set (4. 10) reduces to

"Yi = 1,

.m (4° 13)imT.. = (_l)mj ,
1

m= I, Z..... q.
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21
4.5 Noise Reduction with Finite Settling Time Filters

The reduction of noise is important even in applications

where the input is not contaminated with noise. W.R. Bennett 3

has shown that under certain conditions, quantizers can be re-

placed by white noise sources. Even when these conditions are

not satisfied, intuition strongly suggests that a control loop which

is designed to reject noise will also reduce the severity of any

ripple caused by quantization.

Another advantage of designing for minimum noise is that

sudden changes in the closed loop input are smoothed in an opti-

mal manner. For example, as the noise rejection of a closed

loop is increased, the amount of overshoot that is present in the

response to a step input becomes smaller. (See Sections 4.7 and

5. Z ) Intuitively, this occurs because when a system which is

designed to reject noise receives a step input, it does not know

whether it has actually received a step input and should respond,

or whether it has received a noise spike and should remain sta-

tionary. The filter must therefore respond conservatively. The

input is approached slowly and the tendency to overshoot is re-

duced.

It has been shown (Chapter 9, ref. 21) that noise reduc-

tion can be accomplished when a finite memory linear program
J

by minimizing the function _ _i 2, which(equation 4, l) is used

i=0
is called the variance reduction factor. It makes no sense to
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minimize this function by itself since the obvious minimum of zero

is obtained for Ti = 0 for every i. Not only would this program

reject all noise, but all signals as well! Constraints must be im-

posed upon the constants to assure that the desired signals are

passed.

We shall concentrate on minimizing the variance reduc-

tion.factor subject to the constraints that the filter must respond

to step and ramp inputs with small error as is usually the case

when the filter is a closed loop control system. These constraints

imply that equation set (4. 10) must be satisfied for q - 1, i.e. ,

the first two equations in the set must be satisfied:

J

_" _'i " 1, (4, 14a)
i=0

3

_. i7. = - (_ + j). (4.14b)
i=O 1

Even though the closed loop will respond to a ramp input with no

error when _ is zero, it is not advisable to set _ equal to zero

at this time. Since it is possible to improve the step response

and noise rejection of the closed loop by accepting a time lag

in the response to a ramp, a negative _ may represent the best

compromise in some applications. Also, the interesting possi-

bility of employing a positive _ in order to compensate for a

known output load exists.
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When the variance reduction factor is minimized for

constant _, j, and J, subject to the above constraints, (pp. 118-

123, ref. 21), we obtain

=0 J(J + l)-(J + 2) '

The constants which minimize the variance reduction factor are

given by:

(4.15)

2(z.T+1)+ 6o. 6(J + 2o.)
x = (J+l) (J + 2) - JCJ + l)(J + 2) i. (4. 16)

It was stated above that the noise rejection of a system

can be increased if (for constant J) the time lag in response to a

ramp is increased. This can be shown by finding the o. which

yields the maximum noise reduction for a given J. This o. is

found by differentiating equation (4. 15) with respect to o.

o. is found to be -J/Z.

- (j + J/Z).

and

There-

(4, 17)

setting the result equal to zero.

fore:

=

Since, according to equation (4. 15), noise sensitivity increases

monotonically as _ is increased from the value given by equation

(4. 17), it follows that _ should be taken as close to the negative

number -(j + J/Z) as possible for maximum noise rejection.

This increases the time lag through the system.
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In most cases, equation (4° 16) cannot be used to define

a closed loop transfer function, because K(z) must also be con-

strained to satisfy all of the restrictions described in Section 4. Z.

The first restriction has already been accounted for by including

the parameter j in the above equations. Also, if we assume that

G(z) does not have a pole of higher order than two at z = 1 (as is

usually the case), the third restriction has been automatically

satisfied by imposing constraints (4.14). (If the pole at z = 1 is

of order two, then _ must be taken to be zero. If there is no pole

at z = 1 or if the pole is of order one, then_ may assume any real

value. ) It is the second restriction which forces a modification of

the above development. Whenever K(z) is to have as its zeros

some of the zeros of G(z), either because they lie outside the unit

circle or because a ripple-free response is desired, additional

constraints must be imposed.

Let us assume that K(z) is to have as its zeros two of the

zeros of G(z). Then K(z) is of the following form:

J J-2
-i

K(z) : z -j 2_ i,i z-i = (I - Zlz-l) (I - zZz-I } z -j 2; _i z ,
i=O i=O

(4.18)

u Z = ZlZ 2, equation (4. 18) implies that

J J-Z

-Z) -i (4. 19)_- T i z -i = (1 + UlZ-1 +u Z z _" _i z
i=0 i=0

where z 1 and zZ are the zeros of G(z). If we let u 1 = -_-l-Zz and
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-1
Now, by equating coefficients of like powers of z on each side

of this equation, we obtain expressions for the constants {_,i}

in terms of the constants {_i} . This enables us to write the

variance reduction factor and equations (4° 14) in terms of the

constants _6i}. The variance reduction factor becomes

J J-2

Z; "yi2 = _o 2 ÷ (Pl ÷ UlPo)2 ÷ _3 (Pi + UlPi-1 + UzPi-Z )2
i=0 i=2

+ (UlPT.z + UZP,.T_3)z + (uZPT_Z)z,

(4.20)

and the two constraint equations become

J-Z

23 _i = 11(1+ u I + uz) ,
i=O

J-2

i_i = 6,
i=O

(4oZla)

(4.ZZb)

o.+ uI(,,.+ I)+ uz (_+ z)

i .... z)zwhere 6 : - '1+ u I + u (4.ZZ)

The variance reduction factor is now minimized subject to con-

straints (4. Z1) by treating the _i's as independent variables. This

leads to the set of linear algebraic equations which are written in

matrix form on the next page. The variables k 1 and k 2 are

Lagrange multipliers which are introduced for convenience.

These equations define the constants {_ ._ which yield the smallest

variance reduction factor subject to constraints (4. 14) and subject
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to the constraint that K(z) have as its zeros the two zeros of G(z).

Once the constants {j_ i} are found, K(z) is determined from equa-

tion (4. 18). Although the solution of the matrix equation (4.23)

may be quite tedious when performed manually, this synthesis

procedure is simple and rapid if one has access to a general

purpose digital machine.

The details of the above development may be found on

pages 234 to 237 of reference Z1 for the simpler case of con-

straining K(z) to have only one known zero. In this case the equa-

tions for the constants {_i} are defined by matrix equation (4.24),

and K(z) is given by:

J-1

K(z) = (I + UlZ-I ) z -j Z _i z'i ' (4.25)
i=O

where u 1 = -z 1, the known zero. This result can also be obtained

as a special case of the two-zero result by letting z 2 = 0 and

realizing that the summations must be performed with the upper

limit J - 1.

If G(z) has a pole of higher order than two at z = 1, the

third restriction in Section 4. Z is best-handled by designing K(z)

to pass a polynomial of sufficiently high order. Then this restric-

tion is satisfied and the closed loop following capability is simul-

taneously improved. If the closed loop is to follow a second de-

gree polynomial, the following constraint must be imposed upon

K(z) in addition to constraints (4. 14):
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J

z i = z (4.z6)
i

i=O

When K(z) is restricted to have two known zeros z I and z z, K(z)

is given by equation (4. 18) and the constants {_i} , which yield

the minimum variance reduction factor, are defined by a matrix

equation obtained by the same minimization procedure as before.

It should be clear that this procedure can also be used when K(z)

must have more than two known zeros, or when K(z) must pass

higher order polynomials, but the algebra becomes formidable.

4.6 Finite Settling Time Step Response

The application of constraints (4. I0) provides an excel-

lent method of limiting the error that is present in a control loop

while it is operated within its bandwidth. However, the transient

response of a control loop is usually of prime importance, either

because the control problem demands that the control system

respond well to sudden changes in the input, or because the con-

trol loop must be subjected to disturbances. Emphasis is placed

upon the step response since it can be easily measured and pro-

vides an excellent indication of the closed loop dynamics.

One synthesis procedure has been developed which incor-

porates transient considerations (Chapter 12, ref. 21), but which

cannot be applied if the closed loop transfer function must incor-

porate some known zeros. The purpose of this section is to intro-

duce another synthesis procedure which can be applied when K(z)
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is to have known zeros. _The technique enables one to select the
\

constants in the closed loop transfer function so that the step

response assumes prescribed values at certain sampling instants

during the transient response. In those cases where K(z) need

not incorporate any known zeros and where the constants need

only satisfy equation (4. 14a), this method enables one to syn-

thesize K(z) to yield any desired step response that is physically

realizable. If i constraints must be imposed upon K(z) in addi-

tion to constraint (4. 14a), then only J - i points on the transient

portion of the step response can be specified. For example, if

constraint (4. 14b) must also be satisfied and K(z) must have two

known zeros, then only J - 3 points on the transient portion of the

step response can be specified. The remaining points are defined

by the constraints. In these cases, the specified points must be

selected by trial and error until the unspecified and specified

points result in an acceptable transient trajectory. Although this

trial and error procedure may appear to be objectionable, the

procedure can be efficiently applied in many cases (see Section

5.3), particularly if a general purpose digital machine is avail-

able. It must be remembered that every sampled-data synthesis

procedure is in fact a trial and error procedure when transient

considerations are important and K(z) must satisfy numerous

constraints. One must synthesize, examine the results, and

repeat until a suitable transient response is obtained.
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The development of the synthesis procedure follows° A

unit step input is defined by

' n = O, I, 2, ...
r = (4.27)

n
, n = - 1, -2, ...

When this equation is inserted into equation (4° 1), we obtain:

C -"
n

f 0

n-j

i=0

3
Z

i=0

, n< j

7. , n = j, j + 1, ... j + J-1 (4.28)
1

7. , n=j+3, j +J+ 1, ...
1

If the steady state output is to equal the input, the same

equation that was obtained in Section 4.3 with the more general
J

treatment results." P. 7i = 1. The important fact is that
i=0

n-j

Cn = i=0_" Ti whenn = j, j + 1, .... j+ 5. Therefore, whenK(z)

need satisfy no constraints other than that imposed by the step

response, we can select the constants (_,i} so that c n assumes

any value we desire during the transient period. More explicitly,

we can write:

C. = TOJ

n-j n-1 -j

Cn - Cn_l = 2; Ti - _. 7i , n = j + 1, j + 2,
i=0 i=0
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or

c = "Y
n - Cn-I n-j

for n= j, j + 1, .... j+J.

(4.30)

If we let i = n - j, the equations for

the constants become

= c. - c. i = 0, 1, J.
7i l+j l+j - 1 ' "'''

Figure 41 1 clearly illustrates this simple result. We need only

specifythe outputs we desire at the sampling instants and insert

them into equation (4.31) in order to obtain the constants {Ti}.

Noise rejection is simultaneously accomplished by making the

magnitude of the difference between successive outputs small,

since this results in small 7.2's. As stated earlier, however,
1

all of the transient outputs cannot be specified arbitrarily when

constraints other than equation (4. 14a) must be satisfied.

The constraint equations that the constants {Ti} must

satisfy if K(z) is to have k known zeros are obtained by dividing

the factor which defines all of the known zeros,

1
(1 + u 1 z- + ... + u k z-k), into K(z) and setting the coefficients

-1 .
of z in the numerator of the remainder equal to zero. These

equations, together with equations (4. 10), establish k + q + 1

equations for the constants {7i} . J + 1 - (k + q+ 1) = J - (k + q)

equations in set (4.31) may therefore be used to constrain the

transient response. An example of this procedure is given in

Section 5.2.

(4. 31)
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4.7 Transient Considerations

It was mentioned in Section 4.5 that as the noise rejec-

tion of a closed loop is increased, the amount of overshoot that

is present in the step response diminishes. We are now in a

position to better under stand this statement. If the steady state

error for a ramp input is specified,

satisfy constraints (4. 14):

then the constants {Ti) must

+_' + +7 = 1 (4. 14a)70 1 "'" J

_1 ÷ 2_2 + "'" +_J -- - (6 + J). (4.14b)

The ideal step response should increase monotonically to the final

value. Since equation (4.31) is always valid, regardless of how the

constants {_,i} are selected, all of the constants {7i} must be posi-

tive in order to obtain the ideal step response. However, if the

closed loop is to also follow a ramp with no steady state error,
N

equation (4. 14b) implies that _. i _'
i=0 i = " j" This implies that

some of the constants {_i}must be negative. Furthermore, since

theYi's are weighted more heavily for large i in equation (4. 14b),

it follows that the step response must overshoot. It is therefore

impossible to design a linear sampled-data system with a finite

settling time which will have zero steady _tate eri'or with ramp and

step inputs and which will have no overshoot with a step input. As

is made more negative, the magnitude of the negative _i's can

be smaller so that step responses with less overshoot are possible,
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When _ is less than or equal to - j, step responses with no over-

shoot are possible. Since _ must also be reduced in order to

increase noise rejection (see Section 4.5), it follows that design-

ing for increased noise rejection will also reduce the overshoot

present in the step response.

We have just shown that the transient step response of

a linear, sampled-data system can be improved by sacrificing

steady state ramp accuracy. In general, whenever increased

steady state performance is demanded of a linear, sampled-data

system, its transient response must suffer. Let us assume, for

example, that the control system must follow a second degree

polynomial. The following equation must then be satisfied in

addition to constraints (4. 14):

J

i2 = + j)z
i=0

Again, let us assume that _ is zero so that the steady state error

is zero, In the above, we concluded that in order to satisfy con-

straints (4. 14) the constants (h,i} should be negative for large i.

This, however, would cause the left hand side of equation (4,52)

to be negative. If all three constraints are to be satisfied and

the _'its to be kept small in order to keep the variance reduction

factor small, the constants which assume negative values must

be those corresponding to intermediate values of i. When this

statement is interpreted in terms of Figure 4. 1, it follows that

(4.3z)
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the step response will exhibit an oscillation. The magnitude of

the constants {'yi} will also increase and result in increased

over shoot.

It is tempting to indiscriminately employ constraint equa-

tions (4. I0) with a large q since it would appear that the following

capability of the control system could be greatly improved without

much increase in the memory capacity of the compensator. It

must always be remembered, however, that these equations only

define the steady-state behavior of the control system and say

nothing about its transient behavior. As q is increased, the oscil-

lating sign on the right hand side of constraint equations (4. 10)

results in oscillations of increased amplitude and frequency in the

time domain.



CHAPTER FIVE

EXPERIMENTAL EVALUATION OF THE COMPENSATOR

5. 1 Experimental Control Loop

The experimental control loop used to evaluate the com-

pensator is shown in Figure 5. 1. A photograph of the equipment

is shown in Figure 5.2. A small analog computer (Appendix C)

was used for the analog plant so that the compensator could be

tested with various analog dynamic s.

Although the error was generated in analog form, it

should not be implied that the use of this compensator in analog

control loops is proposed. This instrumentation was merely

selected as a convenient method of simulating the digital control

loop shown in Figure 1.3. With this instrumentation, a digital

subtractor was not required, and test inputs could be conveniently

obtained from an analog signal generator. Although some un-

compensated, analog closed loop responses are shown in this

chapter, they are shown only to illustrate the best response that

could possibly be obtained with an uncompensated, digital control

loop with identical gain and analog plant.

The analog to digital converter establishes a quantum

size of fifty millivolts per quantum. The maximum error the

+
A/D converter can accept before it saturates is - 127 quanta, or

84
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FIGURE 5.2 - PHOTOGRAPH OF THE EXPERIMENTAL 
CONTROL LOOP 
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+- 6.35 volts. The fifty millivolt quantum size is sufficiently

large for analog drift and noise to be negligible, and small

enough to result in a maximum signal which can be easily

handled with transistor circuits.

The fact that analog feedback was used in the test loop

does not imply that the test loop does not simulate high precision

digital feedback systems. Although fifty millivolts represents

a relatively coarse quantization of the output variable in the test

loop, which saturates at about +- 10 volts, this output range may

represent only a small portion of the full range of the output

variable in an actual digital control loop. Therefore, except for

the extra error introduced by quantizing the input signal for a

strictly digital control loop, the test results accurately define

the behavior of every digital control loop which has the same

analog dynamics and compensator program that was tested, re-

gardless of the output range or quantization size of the control

loop. This holds true with the provision that the output variable

has an output range at least equal to the number of quanta traveled

by the output of the test loop in a given test.

If quantization is ignored, both the test loop and the digi-

tal control loop of Figure 1.3 can be modeled by the sampled-

data system shown in Figure Z. 1. Most of the results from

sampled-data theory which will be used to synthesize transfer

functions for the compensator have been presented in Section Z. 1
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and Chapter Four. All that remains is to explain the manner in

which transfer function for the analog dynamics is obtained. A

more detailed explanation of the following results may be found

in reference Z4,

The Laplace transform of the computation delay, zero-

order hold network, and analog plant is given by

The first term arises from the computation delay (1 - A)T, the

second term is the Laplace transform of the zero-order hold,

and P(s) is the Laplace transform of the analog plant. AG(z)

is the z- transform of the number sequence obtained by samp-

ling, with the sample time T, the function of time that has the

above Laplace transform. The result is:

-1 -1
AG(z) = z (1- z ) F n (z) , (5.1)

where FA(Z ) is the z- transform of the number sequence obtained

by sampling the function of time which has the Laplace transform

ATs

e P(s)
S

FA(Z ) is called the advanced z- transform corresponding to

P(s)/s and can be obtained from tables (e. g., ref. 24).

The parameter A will be approximately zero when the

compensator is not operated with a high sampling rate. If A
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is zero, AG(z) becomes:

AG(z) = z -z (I- z "l) F(z), (5.2)

where F(z) is the z- transform of the number sequence obtained

by sampling the time function having the Laplace transform

P(s)/s. F(z) is an ordinary z- transform and may also be ob-

tained from tables (e. g. , ref. 24). Since the ordinary z- trans-

form corresponding to a given P(s)/s is considerably simpler than

the advanced z- transform corresponding to P(s)/s, we shall em-

ploy the ordinary z- transform and use a signal from the compen-

sator to control the sampling process so that A is exactly zero in

those cases where the A given by equation (3.6) is almost zero.

5.2 Firs___tt Order System with Integration

Wide bandwidth servo motors can often be accurately

characterized by the following Laplace transfer function:

P(s) = KA (5.3)

s(_ s + 1)

This is the first analog plant that we shall attempt to compensate.

K A is assumed to be a combined gain constant which defines all

of the gain through the analog dynamics. This system is used

as an example to illustrate the behavior of the compensator with

a variety of programs synthesized by methods presented in Chap-

ter Four.
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Let us first attempt to design a control loop with a ten

cycle per second bandwidth. In Section 2.2 it was decided that a

sample time of four milliseconds should be used. A sample

time of T = 3. 968 milliseconds was therefore selected from

Table 3. I. A motor time constant of 15 milliseconds is reason-

able for operation in this frequency range. In order to simplify

future arithmetic, T was assumed to be exactly 4T:

T = 4T = 15,872 milliseconds.

Examination of equation (3.6) will show that a computa-

tion delay of close to one sample time must be accepted, since

p = 2. Increasing the delay to exactly one sample time period

therefore should not seriously degrade system performance,

especially since the sample time is quite small. This was done

so that the use of the simpler, ordinary z- transform could be

illustrated.

The z- transform corresponding to P(s)/s is found from

table s to be :

1
T (I - e )z "I

F(z) = KA z-1 - (i - e-T/'r z-l) (5.4)

AG(z) is found by substituting equation (5.4) into equation (5. Z).

After placing terms over a common denominator, we obtain:
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AG(z) = K A A T0

z -Z (l +AlZ-

(1 - z'1)(1 - e-T/'rz '

T -T/'r
A = -- -l+e

O T

-T/-rA 1 = .-_ - e (I + T/,r)
0

Since (T/T) = 0.25, we obtain:

(s.s)

A = 0.02880,
O

A 1 = 0.9201 , (5.6)

-2 1)z (I + 0.9201 z-G(z) =
(i - z -l) (I - 0. 7788z -I)

A closed loop transfer function, K(z), must now be syn-

thesized. Since the only zero of G(z) lies within the unit circle,

the zeros of K(z) need not be restricted. Since j = 2, K(z) is of

the following form:

J

-2 -i (5.7)K(z) = z _ "[i z
i=O

Let us constrain K(z) so that it will pass a ramp input with no

steady state error. Then constraints (4. 13) must be satisfied

for q= 1:
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J
2_ 7° = 1

i=0 1

J

G i 7 i = -j = -Z
i=O

(s. 8)

used.

that can be used is J = 1, which yields 7 1 = -2, 70 = 3,
21,24

is called a "minimal prototype response function",

This K(z)

and yields

the fastest response that can be obtained. Note from equation

(4.28), however, that the step response overshoots ZOO per cent.

Also, the system is very noise sensitive with a variance reduction

factor of 13. Past experience with sampled-data systems indicates

that a variance reduction factor much larger than one should not be

The minimum response function is therefore not very de-

sirable. In general, minimum response functions are rarely used

in practice because of the large overshoots they exhibit, because

they place no emphasis upon noise reduction, and because they

usually require high loop gains. We shall therefore not consider

them further in this report, especially since the sample time of

the compensator was selected with the viewpoint that approximately

four to eight samples would be allowed for the output to settle (see

Section Z. 2).

Let us try J = 4. This will yield a settling time of ap-

proximately one motor time constant and leave two degrees of

The choice of 3 is somewhat arbitrary. Clearly the smallest value
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freedom for noise reduction. The K(z) with the minimum vari-

ance reduction factor subject to constraints (5.8) is obtained

from equation (4. 16). Since a = j = 2, we obtain

2.
T i = 1- _1; i= 0, 1, 2., B, 4. (5.91

Therefore,

-2 - 1 -2 3 -4).K(z) = z (1+ 0.6z +0.2 z - 0.2z- - 0.6z

(5.1oi

The variance reduction factor is now

J 2
z "¢. = 915. (5.11)

i=O I

The maximum output with a unit step input,

from equation (4.28):

CSMAX, is obtained

CslviAX = _o +vl + VZ = 1.8 (5. 12)

Although the variance reduction factor and step response over-

shoot are much smaller than for the minimum response function,

they are still too large for most applications. However, the

program is realistic and was tested. The compensator transfer

function is obtained from equation (2.3):
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D(z) : K(z)
AG(z) C1- KCz))

(l-O. 7788 z -1)

KA_'A z "z (I + 0.9201 Z'I)
O

m-- -Z -i
z E 7 i z

i=O
4 "

(1 - z-Z E _iz'i)
i=0

_ (1 - .-l) _

(5.13)

We know that 1 - z -1 divides evenly into 1 - K(z) since K(z) was

designed to follow a step input with no steady state error. When

this division and the indicated multiplications are performed, we

obtain:

1
D(z) :

-3
1.0.179z-I _ 0. Z67z-Z _ 0.356z - 0.444z-4-

+ 0. 467 z "5

-i 'Z -3 '4 •
I+I. 92z + 0.9Z0z - 0.600z - 1.35z

- 1.34z-5 _ 0.55Zz -6

m

(5. 14)

The digital gain is obtained from rule 3 in Section 3.8:

,h,bi_11_ 1.9Z

< I, KD> - 1.9Z .

Since K D z(zK- I), == we obtainK D Z, K = 3.

is given by rule 4:

_D = 1x-_CD = I

The analog gain
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Since A = KAY-Ao, we obtain

1 1
K A =

V"AoK D _'0. 0159) (0: 0288) (Z)

K A = 1 I00.

Finally, the constants K. which are inserted into the diode ma-
I

trix, are obtained from equations (3. 13) and (3. 14). They are

listed below in decimal and binary form:

KI5 = -0.960 = -0. IIII011

KI4 = -0.460 = -0.0111011

KI3 = +0.300 = +0.0100110

KI2 = +0.676 = +0.1010111

KII = +0.668 = +0. i010110

El0 = +0.276 = +0.0100011

K 9 = +I = +I

K 8 = -0.179 = -0.0010111

K 7 = -0. Z67 = -0.0100010

K 6 = -0.356 = -0.0101110

K 5 = -0.444 = -0.0111001

K 4 = +0.467 = +0.0111100

The experimental response curves are shown in Figure

5.3. Most of the figures illustrating experimental responses in

this chapter will use the same format:
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A. ERROR WITH,

ZERO INPUT

2 Quonto/cm.

20 Msec./cm.

B. STEP RESPONSE

40 Quanta/¢m.

20 Msec./¢m.

C. STEP RESPONSE

ERROR

2 Quonto/¢m.

20 Msec./cm.

D. RAMP RESPONSE

!0 Quanta/cm.

20 Msec./cm.

E. ANALOG RESPONSE

40 Quantalcm.

20 Msec.lcm.

FIGURE 5.:5- EXPERIMENTAL RESPONSES FOR A

FIRST ORDER SYSTEM WITH

INTEGRATION, PROGRAM ONE
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Photograph (a) shows the error with zero input.

Photograph (b) shows a step input and output.

Photograph (c) shows in great detail the steady state

error present in the loop with the step input shown in (b). The

large transient errors are off the scale in this photograph.

Photograph (d) shows a small amplitude ramp input and

output.

Photograph (e), when present, shows the step input and

output of a conventional analog, uncompensated control loop with

the same open loop gain and analog plant as was used in the digi-

tally compensated loop.

In all the photographs, zero amplitude is defined by the

cross-marked horizontal grid line.

The ripple of slightly more than two quanta is surprisingly

small considering that no emphasis was placed on the elimination

of ripple other than minimizing the variance reduction factor.

With zero input, this ripple varies about a DC error of approxi-

mately one quantum. An excellent example of how offset errors

of this type can arise in quantized closed loop systems is given

on page 364 of reference 21. Errors of this type were found to

exist in most of the systems that were tested. In every case,

however, the offset error remained constant with variations in

the input amplitude. This error can therefore be subtracted
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from the input data at the time of preparation and should not be

a matter for concern.

The step response exhibits the overshoot that was pre-

dicted, but the oscillation present in the overshoot represents a

deviation from the theoretical response. The steady state error

is zero if the one quantum offset is ignored.

The one quantum offset is barely discernible in the

photograph of the ramp response.

The settling time is theoretically 6T = 2B. 8 milliseconds.

Both the ramp and step responses settle in exactly this time.

Let us now attempt to synthesize a program which will

respond to a step input with zero steady state error and with no

overshoot. The closed loop transfer function shall be constrained

to have one zero equal to the zero of G(zl in order to minimize

ripple. The steady state ramp response will not be defined, but

note from equation (4. 14b) that the steady state ramp error will

never go to infinity. In the steady state, the output will lag be-

hind a ramp input by an amount defined by _, where _ is ob-

tained from equation (4. 14b) once the constants {_,i} are fixed.

This problem is easily solved with the technique pre-

sented in Section 4.6. First, an output is defined which ap-

proaches the input smoothly, as shown in Figure 5.4. Since j = 2,

the output must be zero at time T but will assume some non-

zero value at time 2T. This value defines the constants To and

P
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1.0

0.8

0.6

0 I I I I I I I Y I I

0 2T 4T 6T 8T lOT

FIGURE 5.4- DESIRED FINAL APPROACH OF

THE STEP RESPONSE

1.0

0.8

0.6

0.4

I T,=0.2946/

F .....
o_ T T 6T 8T lOT

FIGURE 5.5- COMPLETED STEP RESPONSE FOR

"RIPPLE FREE" OUTPUT
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and must be selected so that constraint (4. 14a) is satisfied_'1'

and so that K(z) has the same zero as G(z).

The constraint equation that the constants {Ti} must

satisfy for K(z) to have the required zero is obtained by dividing

K(z) by the numerator of G(z):

J -i -J'[ J_ _A1)J-i_,i]
z-J 2; _,.z z ( z "J

i=o _j S-1 z- i i=O
= - '-I " = z 2; _i + ' -I

Alz:l 1 + A 1 z i=0 1 + A 1 z1 +

(5. 15)

The constraint equation is obtained by forcing the remainder to

be zero; J

r.. )z-i = 0 (5. 16)i=O (-A1 T i

This equation and equation (4.14a) define _/o and _/1" When _/o is

substituted from equation (4. 14a) into equation (5. 16), we obtain

J J

1- Z _'i + Y' (-A1)-i "i'i
i=2 i=2

-I
I+A I

and _' is obtained from equation (4. 14a):
O

J

= I-_ - S "Y."v
"o 1 z

i=2

Insertion of the constants which have been defined in Figure 5.4

into equations (5. 17) and (4.14a) yield _/1 = 0. Z946 and

_'o = 0. 1054. The completed step response therefore appears as

in Figure 5.5.

r
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In this case we were fortunate in obtaining a completely

smooth response. If this had not occurred, the final portion of

another acceptable outtmt trajectory would have to be tried. After

a few trials, one can usually develop an insight into the form that

the step response must assume if K(z) is to satisfy the required

constraints. By trying two extreme responses within the class

of acceptable step responses, one can readily ascertain whether

or not it is possible to obtain an acceptable step response while

simultaneously satisfying all of the constraints which have been

imposed upon K(z).

We now have K(z):

K(z) = z -2 (0. 1054 + 0. 2946 z -I + 0.35 z
-2

+ 0.15z -3 + 0.05z'4+

0.05 z-5), (5. 18)

or alternatively,
4

K(-.) = (1 + 0.9Z01
i=0

6i z "i (5. 19)

The long division process (equation 5. 15) yields the following rela-

tions for the constants {_i}:

6o = 70 = 0. 1054,

61 = 71 - A 13' = 0. 1976,O

_2 = 7 2 - A I 61 = 0. 1682,

_3 = 7 3 - AI_ Z = -0.004719,

64 = T 4 - AI_ 3 = 0.05434.
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We can now find D(z):

z(-.)
D(.,) = AG(z) CI' KC-.))

D(z)

4

z'2(i+0.9201z'I) Z _i z
-i

i=0

Fz 2 (I + 0. 9201 z-l)_ F
KAT A o

[-
z 23 "Yi z

i=O

(5.20)

Again, noting that (1-z -1) must divide evenly into 1-K(z), we

obtain:

O(z)- I
KAT A o

I

(0.105 - 0. 116 z

(l+ z-I

-I+ 0° 0142 z-2 - 0. 136 z-3 + 0. 0580 z"4-

- o. 0423 z-5)
,2 -3 -4

+ 0. 895 z + 0. 600 z + 0. 250 z

+ 0. I00 z "5 + 0. 0500 z "6)

{5.21T

It now follows (see previous example) that:

K D = I,

1 = 2-23"K = 24"K,

K = 4.

O. 136
Also, K A TK = I,Ao D

0. 136

K A = AOT(1) = 296.

The constants {Ki}are now listed:
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4_

KI5 = -I = -I

KI4 = -0.895 = -0. III0011

KI3 = -0.600 = -0. I001101

K = -0.250 = -0.0100000
12

K = -0.100 = -0.0001101
II

Kl0 = -0.050 = -0.0000110

K 9 = +0.779 = ÷0.1100100

K 8 = +0°853 = +0.1101101

K 7 = +0. I05 = +0.0001101

K 6 = --I = -I

K 5 = +0.428 = +0.0110111

K 4 = -0.31Z = -0.0100111

Before examining the experimental responses, let us

first note some expected results. For step and ramp inputs, the

output should reach its steady state value in 7T seconds or ap-

proximately Z8 milliseconds. The amount that the ramp re-

sponse will lag the input is calculated from equation (4. 14b):

5

= -j=- _ i_i = -3.89o
i=0

The ramp response should therefore lag the input by 3.89T sec-

onds, or approximately 15.4 milliseconds.
5

2
The variance reduction factor is _3 _'i = 0. Z48. A

i=0

variance reduction factor this low should result in excellent

smoothing of the noise introduced by quantization. Since we have
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also designed K(z)to eliminate the ripple introduced by sampling,

this program should yield about the smallest steady state ripple

that can be obtained with this analog plant.

The experimental results are shown in Figure 5.6. The

steady state ripple is now well within two quanta. A DC offset

of almost one quantum is again present with zero input.

The step response is almost exactly as predicted by Fig,

ure 5.5. (The step input was applied at the instant that the os-

cilloscope trace starts. ) The detailed photograph of the step

response error shows a steady state error of one quantum after

removal of the one quantum offset. However, the error does

stabilize at the one quantum offset level sixty milliseconds after

application of the step input.

The ramp response lags the input by the predicted amount

if the one quantum offset is removed. The response is also seen

to settle in the predicted time.

Let us now use the smallest sample time which can be

programmed (T = Z. 048 milliseconds) in an attempt to further in-

crease the system's bandwidth. The same analog plant shall be

employed. Since the computation delay will now be significantly

lessthan one sample time, the modified z- transform will be

used to characterize the analog dynamics. (Use S15_M(B ) for

the A/D input T L as shown in Appendix t_)
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A. ERROR WITH

ZERO INPUT

2 Quanta/cm.

20 Msec./cm.

B° STEP RESPONSE

40 Quanta/cm.

5 Msec./cm.

C, STEP RESPONSE

ERROR

2 Quanta/cm.

5 Msec./cm.

D° RAMP RESPONSE

I0 Quanta/cm.

20 Msec./cm.

Eo ANALOG RESPONSE

40 Quanta/cm.

5 Msec./cm.

FIGURE 5.6_ EXPERIMENTAL RESPONSES FOR

FIRST ORDER SYSTEM WITH

INTEGRATION, PROGRAM TWO

A
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The advanced z- transform corresponding to P(s)/s is

found from tables to be:

L1 -I -aAT ]
FA(Z ) = KA Tz aAT - 1 e

,1)z + -1) + :aT .-1)- a(1 - z a(1 - e

a = liT.
(5.zz)

AG(z) is found by inserting this result into equation (5° 1). After

placing terms over a common denominator, we obtain:

AG(z) K A A

o [_(1, z-l)(1_e-aT

-aAT
A - 1 (aAT - 1 + e ) ,

o a

(5.z3)

Ja -aATA1 = _1 T(1 - A) + l+ e -aT (1 - aAT) - Ze ,,

1 I -aATA2 = a-'A-- e +e
O

-aT

(aAT - I - aT)]

We must now find A. Examination of equation (3.6) will

show that we must first fix M, the number of compensator outputs

which must be remembered. This, in turn, requires us to define

the form of K(z). Let us restrict K(z) to have the zeros of G(z)

in order to reduce ripple:

K(z) = z"

j J-2

= -I (i+ AlZ-I + Azz-Z ) =_0 -i1 Z 7 z -i z _i z
i=0 i i

(5.24)
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When this equation is substituted into equation (2. 3) we obtain:

1

-- J-2
-aT - -i(1 - e z , Z __i z

i=O

l _ Z-

J
1 -i

7iz
i=O

I -z

(s. zs)

If we assume that K(z) is designed to pass a step input with no
J

steady state error, then (1-z "l ) divides evenly into (1-z "1 5; Tiz'i).
i=0

It therefore follows, by comparing with equation (2.5) that N = J-1

and M = J. Substitution of these values into equation (3. 1) yields

2J _ 15, or JMAX = 7. Let us take J = 7. Although this yields

the longest settling time, it also yields the smallest variance re-

duction factor and step response overshoot. The settling time

will still be small because the sample time is small.

A is now found by substituting M = 7 and p = 1 into equa-

tion (3. 6). We obtain A = 8/16 = 0.5. The numerical values for

the constants in equation (5.23) may now be found:

AG(z)
1 ['I + A 1 z-I + A2 z-2 7

K A
A

o -:b{"
3. 233 X 10-5

, A 1 = 5.750, A 2 = 0.9176.A

O

(5.26)

Let us now further restrict K(z) to have the smallest pos-

sible variance reduction factor subject to the constraints that it

pass a step and ramp input with no steady state error. The
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constants {_i} are then obtained from equation (4.23) with ] = 7,

a = j = 1, u 1 = A 1 andu Z = A 2. They are:

60 = 0. 1240 , _I = 0.04668 , _2 = 0.03531 ,

_3 = 0.005000 , _4 = -0.01093 , _5 = -0.06960

The constants {Ti} are obtained from equation (5.24):

T o = 0.1239 ' T1 = 0.7594 , 72 = 0.4174 ,

73 = 0.2509 , 74 = 0,05022 , 7 5 = -0. 1279,

76 = -0.4102 , 77 = -0.06386.

D(z) is therefore given by:

T0. 124 - 0. 0623 z -1 - 0. 00571z -2 - 0. 0260 z -3
-4 5

D(z)= 1 -0.0153z -0.06002- +°'°612z "s)

-1 -2 z-3 z-4(1 +0.876z +0.117z -0.301 -0.552

-- - 0. 602 z-5 _ 0. 474 z -6 - 0. 0637 z -7)

(5.27)

It follows that K D = l(Z3-K) > 0.876, K = 3,

analog gain is given by (0.I24/KAAoKD) = i,

The constants {Ki} are:

andK D : i. The

or K A = 0. 124/Ao=3840.

KI5 = -0.876 = -0. III0000

KI4 = -0. 117 = -0,0001111

Kl3 = +0.301 = +0.0100111

Ki2 = +0.552 = +0.1000111

Kll = +0.602 = +0, 1001101

KI0 = +0.474 = +0.0111101
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K 9 = +0.0637 = +0.0001000

K 8 = +I = +I

K 7 = -0.503 = -0. I000000

K 6 = -0.0461 = -0.0000110

K 5 = -O, ZlO = -0.0011011

K 4 = -0.124 = -0.0010000

K 3 = -0.484 = -0.0111110

K z = +0.494 = +0.0111111

4
E

i=O
= = 1.60Z, andTheoretically, we have CSMAX Yi

J 2
_. _'0 = 1. 023. The settling time should be 8T = 16.4 milli-
i=0 I

seconds.

Figure 5.7 shows an offset error of three quanta in all

of the responses. The settling time of the ramp and step re-

sponse is exactly as predicted, as is the step response overshoot.

It is interesting to observe the improvement in step re-

sponse and variance reduction factor that can be obtained by

accepting a ramp response which lags the input by only one sam-

ple time period. A compensator program was synthesized in

exactly the same manner as the previous program except that

e = (-1 + j) = 0 was used in equation (4. Z3) instead of a = 1. The

results are given below without further explanation.

_o = 0.10Z4 , _1 = 0.040Z6 ' _Z = 0.03194

_3 = 0.008376 , _4 = -0.004517 , _5 = -0.04804
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Ao ERROR WITH

ZERO INPUT

2 Quanta/cm.

I0 Msec./cm.

So STEP RESPONSE

40 Quonto/cm.

I0 Mse c./cm.

Co STEP RESPONSE

ERROR

2 Quanta/cm.

I0 Msec./cm.

|llr&ll lU

D°

E°

RAMP RESPONSE

I0 Quanta/cm.

I0 Msec./cm.

ANALOG RESPONSE

40 Quanta/cm.

IO Msec./cm.

FIGURE 5.7_ EXPERIMENTAL RESPONSE FOR

FIRST ORDER SYSTEM WITH

INTEGRATION, PROGRAM THREE

A
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70 = O. 1024 , 71 = O. 6290 , 72

73 = O. 2289 , 74 = O. 07295 , 75

76 = -0. 2804 , _'7 = -0. 04408

D(z) = 1

KD= 1,

= O. 3574

= ._0. 06633

-- -I z'2 3_0.(0.102-0.0497z -0.00345 -0.0197z- 0119z "4"

- 0. 0441 z-5 + 0. 0422 z-6)

K= 3,

KI5 =

KI4 =

KI3 =

KI2 =

KII =

KI0 =

K 9 =

K 8 =

K 7 =

K 6 =

K 5 -

K 4 =

K 3 =

K 2 =

-I+ z'2 z-3 -4(I + 0. 898 z 0. 269 - 0. 0888 - 0. 318 z

-0.3912-5-0.3242-6-0.04392"7) _

(5° 28)

K A = (0. 102/Ao) = 3180

-0.898 = -0.1110011

-0.269 = -0.0100010

+0.0888 = +0.0001011

+0.318 = +0.0101001

+0.391 = +0.0110010

+0.324 = +0.0101001

+0.0439 = +0.0000110

+1 = +l

-0.485 = -0.0111110

-0.0337 = -0.0000100

-0.192 = -0.0011001

-0, 116 = -O. O001111

-0.431 = -0.0110111

+0.412 = +0.0110101

!
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J
_ 7 2

i=O 1

before.

4

We note that now CSMAX = _" _i =
i=0

I.391, and

= 0. 678. The settling time is, of course, the same as

The experimental responses are shown in Figure 5.8.

The offset error has increased, but this is of no consequence.

The ripple is now smaller, as might be expected because of the

smaller variance reduction factor. The step response overshoot

has also decreased as predicted. Note that the settling time has

remained unchanged and that the ramp re sponse lags the input by

one sample time period when the four quanta offset is removed.

5. 3 Second Order Underdamped System

We shall now attempt to compensate a digital control

loop which has the following analog plant:

P(s) =

2
K A con

Z 2
s +2_co s+ _.

n n

with _ = 0.4 and con = 30.7 (approximately five cycles per sec-

ond). The sample time was selected from Table 3. 1 to be 5. 888

milliseconds, approximately one-fifth of the plant time constant

1/_n. Since p = 3, the computation delay will be approximately

one sample time period. We therefore use the signal _ to

control the A/D converter in order to have a computation delay

exactly equal to the sample time. This enables the ordinary

z- transform corresponding to P(s)/s to be used, resulting in
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A. ERROR WITH

ZERO INPUT

4 Quonto/cm.

I0 Msec./cm.

B. STEP RESPONSE

40 Quanto/cm.

I0 Msec./cm.

C. STEP RESPONSE

ERROR

4 Quonta/cm.

I0 Msec./cm.

D. RAMP RESPONSE

I0 Quanta/cm.

I0 Msec./cm.

FIGURE 5.8- EXPERIMENTAL RESPONSE FOR A

FIRST ORDER SYSTEM WITH

INTEGRATION, PROGRAM FOUR

,,)
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the following pulse transfer function for the analog dynamics:

+
AG(z) = KAA ° L 1 + Blz_l+B2z,2j ,

A ___

O

A 1 =

B 1 =

B 2 =

a =

-aT aT a
e (e - cos bT - _ sin bT) ,

-aT -aT a
e (e - cos bT + _ sinbT)/A ° ,

-aT
-2e cos bT,

-2aT
e

COn' b= _n 41 - _2

(5.29)

For our particular values we have:

A = 0. 01554
O

A 1 = 0. 9529

B I = -I. 835

B 2 = 0.8654.

Since P(s) is underdamped and G(z) has a zero almost on

the unit circle, K(z) had better be designed to have a zero equal to

the one zero of G(z) in order to reduce ripple• K(z) is then of the

form:

-Z J -i -2 J-1 -i (5.30)K(z) = z Z "Yi z = z (I ÷ A 1 z -1) 23 _i z
i=0 i=0

In anticipation of severe overshoots with an underdamped system,

J was chosen as large as possible without exceeding the memory
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capacity of the compensator. The maximum J should yield the

smoothe st re sponseo

into equation (2.3).

In order to find 3MA X, substitute K(z)

After simplification, we have

J-1
1 -i

(i + B 1 z" + B 2 z "z) _, 6i z

D(z) = J i=O (5.31)
-2 -i

KAA (I- z :E 7i z )
o i=0

We therefore have N = J + 1 and M = J + 2. It follows from equa-

tion (3. 1) that 2J + 3 < 14, or JMAX = 5.

A minimum variance reduction factor program subject to

constraints (5.8) was then synthesized. The constants {6i} are

obtained by solving equation (4.24) for J = 5, a = 2, andu 1 = A 1.

The result is:

6o = 0. 7446 , 61 = 0. 001234 , 62

_3 = 0.0003436 , 64 = -0. 4040.

The constants {7i} are obtained from equation (5.30):

7o = 0.7446 , 71 = 0.7107 , 72

73 = 0. 1622 , 7 4 = -0. 4037 , 75

= 0.1699 ,

= 0.1711 ,

= -0.3850

We therefore have:

D(z) : l

-- -3
(0,745 - i.365 z-l+ 0. 812 z-Z- 0. 310 z

-0. 258 z -4 + 0. 742 z -5 - 0. 350 z-6)

3 -4
(I-0.745z-2-0.7112 - -0.171z

- 0. 1622"5+ 0. 404z-6 + 0. 385z "7)

(5.32)

°
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This program did not produce a satisfactory response in

any sense. The loop would limit cycle unless it was started

in a particular manner. When closed, the loop exhibited a ripple

of over 20 quanta and would go into a limit cycle if disturbed

slightly.

The reason for this occurrence is found by examining

the final value of the unit step response of the compensator. This

is obtained by letting z go to one in equation (5.32). The denomi-

nator, of course, goes to zero since it contains the factor

(1-z-l) 2. The numerator goes to 0. 016/KAA . This number is
O

approximately zero in comparison with the numerator terms.

Therefore, the numerator very nearly has the factor (1-z'l),

which corresponds to differentiation. The use of this program

is therefore tantamount to placing two integrators in series with

a differentiator. The differentiator tends to block the low fre-

quency components of the error signal and they are never fully

recovered by the integration. Due to inaccuracies in the differ-

entiation and integration processes, the compensator appears as

an approximate open circuit in the forward loop. Therefore, the

loop always tends to drift away from its null position. In our par-

ticular case, the loop dynamics and compensator inaccuracies

resulted in a continuous hunting about the null. In other cases, a

program of this type could result in a system which would drift

into saturation and remain there. This difficulty should not be
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blamed upon inaccuracies resulting from the particular instru-

mentation that was employed for the compensator. This type of

program must be avoided with any form of compensation, whether

it be analog or digital.

q

The limit cycle that was observed cannot be explained

with the above simple argument because it is a nonlinear oscilla-

tion caused by saturation. With the inherent,tendency of the loop

to oscillate, however, the presence of the limit cycle is not sur-

prising.

The difficulty with the above program is easily elimi-

nated by dividing the numerator and denominator of D(z) by

(l-z-l)o We have

numerator 1

I -z -I

and

denominator

(0. 745-0°620z-i + O. 192z

-5-0.376z -4 +0°336z +

-2 -3
-O. l18z

O. 016
-I )

l-z

(5.33)

-2 3
(I + z'l+o. 255z -0.455z"

-5
-0.789z -0. 385z -6}"

-0.626 z
-4

(5.34)

If the remainder term is neglected, D(z) becomes:
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m

(0. 745 - O. 620 z-i + O. 192 z -z- O. 118 z -3

D(z) - I - 0. 376 z-4+ 0. 366 z-5)

KAT° (i+ z-I + 0. 255 z'2 _ 0. 455 z - 0. 626-3 z-4

-5
-0.789z -0. 385z -6)

The constants to be programmed are obtained as before.

K D = 3(23-K) > I, K = 4, K D = 1.5, 0.745
-- KAAoK D

0. 745
KA = (0, 01554} (1.5)

32.

:l,

KI5 = -0.667 = -0. I010110

KI4 = -0° 170 = -0.0010110

Kl3 = +0. 304 : +0.0100111

Kl2 = +0.417 = +0.0110101

Kll = +0.525 = +0. 1000011

K10 = +0.256 = +0.0100001

K 9 = +l = +l

K 8 = -0. 821 = -0. ll01001

K 7 = +0.258 = +0.0100001

K 6 = -0. 160 = -0.0010100

K 5 = -0. 506 = -0. 1000001

K 4 = +0.491 = +0.0111111

The performance characteristics of interest for this pro-
3 J

2
gram are CSMAX = _" _i = 1. 789, and 23 "Yi = 1. 433. The

i=0 i=0

settling time is 7T = 41. 1 milliseconds.
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The experimental results are shown in Figure 5. 9. An

offset error in all of the responses is again evident. The gross

settling time of the step and ramp responses is 41 milliseconds

as predicted, but the step response has a significant undershoot

that should theoretically not be present. One hundred millisec-

onds are therefore required for the step response to truly settle.

The step response overshoot is as predicted, and there is no

steady state error in the step and ramp responses except for the

offset error. Although it would probably be desirable to try other

programs as was done in the previous section in order to reduce

the step response overshoot, we shall not take the time to repeat

these procedures here.

It is possible to derive an expression in terms of the

constants present in the pulse transfer function of the analog

dynamics which will yield an indication of when D(z) will have the

difficulty that was discovered in this section. The difficulty will

arise whenever the coefficients in the numerator polynomial de-

fined by equation (2.3) add to approximately zero. If K(z) is of

the form

i o o ]K(z) = z -j + Z A° z-
i:o ' Li:O _i z-i (5.36)

and AG(z) is of the form
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A° ERROR WITH

ZERO INPUT

2 Qucnto/cm.

50 Msec./cm.

B, STEP RESPONSE

40 Quonto/cm.

50 Msec./cm.

C° STEP RESPONSE

ERROR

2 Quontc/cm.

50 Msec./cm.

D° RAMP RESPONSE

I0 Quanta/cm.

50 Msec./cm.

E° ANALOG RESPONSE

40 Quonto/cm.

50 Mse c./cm.

FIGURE 5.9-- EXPERIMENTAL RESPONSES FOR A

SECOND ORDER SYSTEM
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AG(z) = A

Q

_-J (l+ z A.z -i)
i=0 :

L

(i . z'l)m(l+ 23 B.z -i)
i=l :

(z. 2),

where (1 - z-l) m is a factor of 1 - K(z), then it follows, by letting

z go to one in equation (2.3), that the sum of the coefficients in

the numerator polynomial of D(z) is

E JN 1 L J-Q

2_ a i = -_- 1 + E B. 2_ _i (5.37)
i=0 i=l : i=0

A slight extension of the development leading to equation (4.21a)

yields:
J-Q

I

Z _i = Q (5.38)
i=O

1+ _. A.
i=O :

When this result is inserted into equation (5.37), we obtain
D

L
I+ 23 B.

N :
1 i=l

i=O x A Q A.
I+ 23 x

i=O

When K(z) is of the form

where

_1 k il J -k -iK(z) = z -j + Z u. z- 2; _iz ,
i=0 x i=0

k
-i

(I+ Z u. z ) is a factor of the numerator of G(z),
i=O x

(s. 39)

(5.40)

then
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N
1

Z a.
i=0 x ='X

N
Whenever E a.

-- L --

i+ E B.
i=I x

k
1+ E u.

i=O x

is small relative to the constants {Ai} and {Bi},
i= 0 l

-1)(1-z will usually be an approximate factor of the numerator of

D(z).

5.4 Second Orde_____rUnderdamped System with Integration

The compensation of a digital control loop with the analog

plant 2
K A cOn

P(s) - s(s2 + 2_ cons + co 2) (5.42)
n

shall now be illustrated. A natural frequency of _n = 12.56 (approxi-

mately two cycles per second) was selected in order to illustrate

the behavior of the compensator at its lower frequency limit.

= 0.4 was again selected in order to demonstrate the more dif-

ficult underdamped case.

The largest possible sample time, T = 15. 488 millisec-

onds was selected, which is approximately one-fifth of the time

constant I/c0 n . Since the computation delay will be nearly one

sample time period, the A/D converter was again controlled to

provide a computation delay of exactly one sample time period.

The ordinary z- transform could then be used to characterize the

analog dynamics, resulting in



AG(z) = KAA °

/

/

/123
t

/

z -z (i+ i z-

-i) 'I1 - z !1 + BlZ

A = T - _ (i+ B I +_)
O 0_ '

n

1 (T B1 + Z___
0 n

+A z z )

+ B 2 z-Z

(BI Bz + 1+ Za))

A2 = "A--I (TB z + _ (B 2 - a)) ,
O n

B 1 _2 e -_ u_nT V_ _Z)= cos (_ T -
n

B z

(-_ + I/Z_) e -_nT sin (_n T Z - 7)

(y = +

(5.43)

-r_ T
n

+ e cos (U_nT V q - _z)

For our particular values, we have:

A = 9.38Z Xl0 -5
O

A 1 = 3.842

A z = 0.9Z51

B 1 = -I. 8ZI

B z = 0.8559.

In order to obtain as little ripple as possible,

use a K(z) of the form

let us
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J -i -2 (I + A 1 -I J-2K(z) = z "2 _S 7i z = z z + A 2z -z) _;
i=0 i=0

(5.44)

and use the largest possible J. As in the previous section, JMAX

is found by substituting K(z) into equation (2.3):

J-2

(I + B 1 z -I + B z z -z) _. _i z-i

D(z) - i=0, C5.45)

KAAol -a J -i 1

-z _ _i z
...... i=0

1 z -I

N
I 0. 0349

Now note from equation (5.39) that _. cLi = _ 5. 767 =
i=0

1
(. 0065). Therefore, the numerator of the right hand side of

equation (5.45) will probably have the approximate factor (1-z'l).

In order to avoid this situation,

in equation (5.45) must be divided by (1-z-l).

J

(1-z "Z 2] eL. z-i) must have the factor (l-z
i=0 I

therefore constrain K(z) to satisfy equations (5.8).

the numerator and denominator

This implies that

-1) 2, and we must

After per-

forming the required cancellations, it follows that N = J-1 and

M = J. Therefore 2J-1 < 14, or JMAX = 7.

A minimum variance reduction factor program subject

to the above constraints was then synthesized by substituting

J = 7, u 1 = A 1, u 2 = A 2, and a = 2 into equation (4.23). The

results follow:
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0o = 0.2124 , 01

03 = -0.008006 , 04

= -0.03845 , 02 = 0.06178,

= -0.0002126 , 05 = -0.1310

7 ° = 0.2124 , 71 = 0.8544

73 = 0.2649 , 7 4 = 0.02619

76 = -0.5035 , 77 = -0.1212

, 7.2 = 0.4060 ,

' >5 = -0.1392,

(1 + B 1

J--2

-1 -z) -iz + B 2 z _ 0i z
i=0

(1 + B 1 z

J-2

-i + B2 z-2) Z; 0i z -i
i=0

-l i ,

l -z

(0.2124- 0.3483 z -I + 0.1736 z

.0,08759z-3+0.067242 -4

- 0. 1375 z -5 + 0.2384 z "6

-0.1121z -7)

-2

-I -2
(0. 212 - Oo 136 z + O. 0376 z

-3
- O. 0500 z + O. 0173 z'4-0. 1202 "5

-6
+0. ll8z ) +

-7
0. 006 z

J
-2

1 - z Z 7..
Li=0

(1z-i)z

-i
z

-3
(I + 2z'I + 2.792 -2 + 2.722 + 2.25z

+ 1.512 -5 + 0.7462 -6 + O. I122 -7)

-4

i

(0. 212 - O.136 z-I + O. 0376 z-2 _ O. 0500 z-3+ O. 0173z -4-

-0. 120 z -5 + O. 118 z'6)

(I +22-I+2.79z-2+2.72z "3 +2.252-4+1.51z -5

-6 -7
+ O. 746 z + O. 122 z )
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KD = 8(Z3-K)

0.212

>__2.79, K = 4, K D = 4,

0.212
K A = = 567,

(9.38 × i0 -5) (4)

KI5

KI4

K13

KIZ

KII

KI0

K 9

K 8

K 7 =

K 6 =

K 5 =

K 4 =

K 3 =

K 2 =

CSMAX

J
Z

i=O

= -0 5

= -0 698

= -0.68O

= -0. 563

= -0. 378

= -0. 187

= -0. 0304

= +I

-0. 639

+0. 177

-0. Z35

+0. 0814

-0. 566

+0. 557

4

= E 7i
i=0

= I. 301

= -0. I000000

= -0. I011001

= -0. I010111

= -0. I001000

= -0.0110000

= -0.0011000

= -0.0000100

= +I

= -0.1010010

= +0.0010111

= -0.0011110

= +0.0001010

= -0. I001000

= +0.1000111

= 1.764

Settling time = 9T = 0. 139 seconds
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The experimental responses are shown in Figure 5.10.

The first serious problem associated with saturation of the com-

pensator was encountered. The step input shown in Figure 5.10a

is the largest input that can be accepted before the output of the

compensator saturates.

The first serious deviations of the experimental re-

sponses from the theoretical responses predicted by sampled-

data theory have also been encountered° The step response does

not overshoot and requires almost twice the time to settle as was

predicted° The existence of this deviation should not be surpris-

ing. Since the input step is only sixteen quanta in amplitude,

quantization errors can be expected to play a large part in shaping

the response. In order to fully predict a response when quantiza-

tion errors are significant, one would have to perform a point by

point plot of the response, taking into account the quantization

process associated with multiplication within the compensator as

well as the quantization of the error. Such an analysis, however,

would apply only to a particular compensation problem and would

very likely yield no information as to how to alter a compensator

program in order to improve a particular response. Studies have

been made to predict the effects of quantization in closed loop sys-

4, 21
tems, but with very limited success° Only an upper bound on

the bias error, which we have found to be relatively unimportant,

r
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Ao ERROR WITH

ZERO INPUT

2 Quanta/cm.

0.5 Sec./cm.

B° STEP RESPONSE

I0 Quanta/cm.

0.5 Sec./cm.

C° RAMP RESPONSE

I0 Quanta/cm.

0.5 Sec./cm.

Do RAMP RESPONSE

I0 Quanta/cm.

0.5 Sec./cm.

FIGURE 5.10-- EXPERIMENTAL

SECOND ORDER

INTEGRATION

RESPONSES FOR A

SYSTEM WITH
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can be obtained unless one wishes to perform a detailed point by

point analysis.

The ramp response also shows a significant departure

from the predicted response. Figure 5. l0 shows a lag of 0.1

seconds in the ramp response. This lag is significant since it

is almost equal to the theoretical settling time and the program

was synthesized to yield a zero steady state ramp response error.

Figure 5.10d was included to show that things are not always as

bad as they seem. With an input rate of half that shown in Fig-

ure 5, llc, the output follows the input with negligible error.

No closed loop analog response is shown because the

conventional analog loop was unstable at the gain that was em-

ployed.

5.5 Conclusions

The compensator was tested with three different forms

of analog plants which are commonly encountered in practice.

The time constants of the plants were selected so that the com-

pensator was tested over its entire recommended frequency

range of two to twenty cycles per second. Very satisfactory

performance was obtained in all cases with compensator programs

synthesized with sampled-data techniques. The correlation be-

tween actual responses and those predicted by sampled-data the-

ory, where it is assumed that the variables are unquantized, was

truly remarkable. Only with the last program, which was
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synthesized to compensate an underdamped second order system

with integration, were any significant departures from the

sampled-data theory responses noted. This type of analog plant,

however, is close to being as difficult a system to compensate

as will ever be encountered in practice. Although higher order

systems are common, they will usually have "lead" terms in the

numerator of the transfer function to help reduce the time lag

through the analog dynamics. We can safely conclude that the

objective of designing a compensator which can be applied in

virtually every high performance digital servomechanism at a

cost comparable to the components presently employed in these

control loops was accomplished.

5.6 Recommendations for Improvement of the Compensator

In view of the excellent results that have been obtained,

there is little to recommend in the way of improvement, There

appears to be no need for increased computational accuracy and

very little hardware can be eliminated by reducing accuracy.

The number of samples of the variables which are remembered

are adequate but not excessive. Fewer samples, and hence less

memory and longer sample time, cannot be used because then

minimal response functions, which are inadequate for most ap-

plications, would have to be employed. Of course, the possibil-

ity of using small memory and fast sample time so that the
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compensator operates as a continuous element always exists, but

this would require an entirely new investigation.

The only suggestion for improvement is to decrease the

input word size and increase the output word size. With the pre-

sent design, the output of the compensator almost always satu-

rates before the full input range of the compensator is utilized.

The decrease in input word size can therefore be made without

degrading the compensator's performance, and its output range

can be increased by utilizing the memory vacated by the input

data.
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APPENDIX A

DIGITAL CIRCUITS AND CORRESPONDING LOGIC DIAGRAMS

Discrete component transistor circuits were used through-

out the design. Although some 200KC flip-flops were used, all

gating and most registers are composed of higher speed circuits.

The 200 KC flip-flops will be explicitly labeled as such to dis-

tinguish them from the high speed flip-flops; the same logic sym-

bol is used for the two types of flip-flops since they perform iden-

tical logic functions.

The 200 KC logic which was presently in use at the Digi-

tal Systems Laboratory at Case Institute of Technology, and the

serial memory operated with zero and -6 volt output levels.

Since commercial high speed circuits with these output levels

were quite expensive, a line of high speed circuits was designed

and built for use in the compensator. These circuits were tested

at frequencies up to five megacycles. Judging from the probaga-

tion delays and capacitor recovery times, however, they should

operate reliably at frequencies up to ten megacycles. The im-

portant characteristics of the circuits are tabulated in Table A. I.

The rise and fall of times of the circuits are less than 25 nano-

seconds; no effort was made to obtain an accurate measurement

because these times are usually not important in logic design.
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LOAD

(GATE LEGS)

5

PROBAGATION DELAY

(NANO SECONDS)
I

TURN ON TURN OFF

9 9

9 30

A. NOR GATE

I

MAXIMUM
LOAD

(GATE LEGS)

7

LOAD

(GATE LEGS)

5

PROBAGATION DELAY

(NANO SECONDS)

25

40

MAXIMUM

LOAD

(GATE. LEGS

B. FLIP-FLOP

TABLE A.I- 5 MC LOGIC CHARACTERISTICS
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The 200 KC flip-flops have an unloaded switching time

of 0.2 microseconds and will drive up to seven gate legs.

The circuits are shown in Figures A. 1 through A. 4.

The gates and flip-flops are of a standard configuration and a

description of their electronic behavior may be found in numerous

25
sources. Therefore, we shall only discuss their behavior as

logical elements.

A logical "zero" is represented by zero volts (saturated

transistor), and a logical "one is represented by a voltage less

than -6 volts (cut off transistor).

The operation of the NOR gate should be dear° The

gated pulse generator will emit a "zero" to "one" pulse when the

capacitor input switches from "one" to "zero" provided the other

level is "zero".

The five megacycle and 200 KC flip-flops operate in

exactly the same manner. Terminals E and C must always be

grounded. They are shown explicitly since they may be used

manually to set or reset the flip-flop. The flip-flop is set by

opening pin C and reset by opening pin E. The flip-flop may also

be manually set by grounding pin F and reset by grounding M.

Terminals S and 1_ are DC set (S) and reset (R) inputs.

Application of a "one" to one of these inputs will send the flip-

flop to the appropriate state and hold it there as long as the "one"

level is present, regardless of any transitions on inputs J and K.
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FIGURE A.4- 200 KC FLIP-FLOP CIRCUIT AND
LOGIC DIAGRAM



142

Terminals H and L must be attached to control levels.

These levels define whether or not "one" to "zero" transitions

on pins J and K will switch the flip-flop. (A "zero" to "one"

transition will never switch the flip-flop. ) A transition on input

J will reset the flip-flop if level H is "zero". Likewise, a transi-

tion on input J will reset the flip-flop if level H is "zero". Like-

wise, a transition on input K will set the flip-flop if L is "zero".

The flip-flop may be connected to operate as an AC set-

reset flip-flop or as a trigger (change) flip-flop. Abbreviated

logic symbols were used for these two configurations because of

their widespread application. These logic symbols and the inter-

connections implied by them are defined in Figures A. 5 and A. 6.

Usually, all inputs to a flip-flop will not be used in a

given application. Any unused inputs will always be omitted

from the logic diagram. When pins C or E are not explicitly

shown, it is implied that they are grounded. When any of the other

inputs are not shown, it is implied that they are left open.

It should be mentioned that diodes D 1 and D z in Figure

A. 3 may be omitted when the flip-flop is used with low input fre-

quencies. These diodes are not needed if the input on J or K re-

mains at the "one" level for at least 0.25 microseconds before

switching to "zero".

It is possible to add more AC inputs to the basic flip-

flop by adding more resistor - capacitor-diode gates to the basic
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circuit. The flip-flop can then be switched by any one of a num-

ber of inputs. This type of logical "OR" was applied only in the

binary counters, where flip-flops with up to three trigger inputs

were employed. The notation for such a multiple trigger input

flip-flop is shown in Figure A. 7.

The bidirectional counter circuit, shown in Figure A. 8,

uses a two input trigger flip-flop. Terminals N and M are con-

nected to the "one" and "zero" sides of the preceding counter

stage. Levels S and R control whether input N or M triggers

the flip-flop and hence control whether the counter counts back-

ward or forward. When one of these levels is true, the corres-

ponding trigger input is clamped at ground by a saturated trans-

istor and inhibits this input from triggering the flip-flop. Changes

in the control levels S and R do not trigger the flip-flop since the

rise time of the 2N404 transistor is far too large. It is necessary

to wait two microseconds after the control levels change before

triggering the counter in order to allow the levels on the trigger

inputs to stabilize.

One other circuit must be included here for completeness -

the four megacycle crystal oscillator. The circuit is illustrated

in Figure A. 9. The oscillator proper consists of transistor QI'

with positive feedback from collector to base. Transistor QZ

serves as an emitter follower to isolate the oscillator. It also

provides a current source drive for the tunnel diode, TD-2, and
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clamps the collector of Q1 at approximately -6 volts. The tunnel

diode is used as a threshold element to square up the sinusoidal

oscillator output. Transistor Q3 amplifies the tunnel diode out-

put. A pulse generator was used as the output stage not because

pulses were required, but to obtain an output signal with the

proper voltage levels.



APPENDIX B

DETAILED TIMING AND LOGIC

B. 1 Machine Operations

In order to obtain the Boolean functions realized by the

various combinational circuits in Chapter Three and to understand

the detailed timing, it is convenient to list all possible control

functions in the order in which they occur in time, along with the

operations they define. This list is shown in Table B. 1. The

transfers specified on a given line are executed when the clock,

C M, switches from "one" to "zero" provided the corresponding

control function is true.

The manner in which the output of the operational multi-

plier K.f, is processed requires a special interpretation since it1

may emit as many as four distinct pulses between successive

"zero" to "one" transitions of C M. rA is incremented with the

multiplier output as long as the indicated control function is true.

The circuitry was designed with time delays so that rA is incre-

mented if a pulse occurs at the multiplier output when the control

level change s.

The reasons for most of the operations should be clear

after reading Chapter Three. Some new signals and operations

have been defined which will be clarified in the ensuing sections.

These new signals and operations are associated, for the most

148
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 S15_M (B)

20 s (B}
15-M

el S (B)
I5-M

22 Sls_M (B)

23 s (B)
15-M

24 S (B)
15-M

CONTROL FUNCTION

S O (B) P03

s o(B) SI(M_)

S 0 (B) S Z (MR)

S 0 (B) P03 aeSA

S O (13) P0_ ASA

S 0 (B) S 127(MR)

S l (B) S 1 (MR)

S l (B) S l (W) - X e • S O (MR). SA

S l (B) S 1 (W) " Ze " SO (MR} SA

S 1 (B) S 1 (W) A e S 2 (MR)

S 1 (B) "P04 S R
P

S 1 (B) P04 S R
P

S 1 (B) 8127 (MR)

S 2 (B) S 1 (MR)

s 2 (B) Vo4 s R
P

S 2 (B) P04 S R
P

S Z (13) S127 (1M[R)

SI5_M (B) S l (NIR) " S l (W)

S l (MR) • S l (W)

"P04 " Sl (W) • H S
e p

P04 ' SI (W) - E S
c p

P04 " Sl (W) • R S
P

Fo4. S 1 (w) • R _)

S127 (M R }

25 Sis (B) . S l {MR)

26 815 (B) • P04 S R
P

27 S15 (B) • P04 S R
P

28 515 (B) " S127 (M R ) - G

29 S15 (B) • SlZ 7 (MR) "

OPERATIONS PERFORMED WHEN

CONTROL FUNCTION IS TRUE

SA_ W

0 _ rH

rY _ rH

rA R _ I_rAR; 1_ W

rA R - 1--rAR; l_W

S 1 (B)_rB; Inhibit K.fl

S K _R_S ; R_W
P

127--rH

- 127_ rtI

0_rA

Count rA backward with Kif; R_W

Count rA forward with Kif; P,_W

S 2 (B)_rB; Inhibit Kif

S K ,_R--S ; R_WP

Count rA backward with Kif; R_W

Count rA forward with Kif; R_W

S% (B)_rB; Inhibit K.fi

S E _SK_Sp; SE_W

R @SK_Sp; R_W

Count rA baikward vdth Kif; l_W

Co,.ml rA forward with Kif; I_W

Count rA bact_ward with Kif; t_,--W

Cc}unt rA h}rward with K f; R_W
t

SI6_M (B)_ rB; inhibit Kif

S K {_R_S ; R--W
P

Count rA backward with K.f; R_W
1

Count rA forward wilh Nil; R_W

S O (F,)_ rP,; l_rW; Inhibit K.f
1

S 1 (B)_rB; rW 4 l_rW; Inhibit K.f

TABLE B.I- DETAILED SEQUENTIAL OPERATION OF THE COMPENSATOR
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part, with the details of processing the sign bit, the gating of in-

formation into and out of the machine, and special operations to

be performed in the event the compensator output saturates.

B. 2 Control

In this section, the sample time selection switch, the

feedback gating for rB, the special sequential circuit, and the two

registers in the control logic will be described in detail.

The sample time switch is wired to provide a three bit

coded output to define when rW has accumulated the desired num-

ber of iterations of the basic computation cycle. The inputs to the

first two stages of rB are generated from this information by the

feedback gating.

The sample time programming switch is shown in Figure

B. 1. The input variables Co(W ) , CI(W ), C2(W ) are the first,

second, and third stages, respectively, of the binary counter, rW.

Their negotiations are obtained from the zero sides of these flip-

flops. It should be clear that the outputs of the switch will all be

"zero" only if the count in rW equals the position number of the

switch. The switch was wired so that all zeros would denote equal-

ity in order that the outputs could be ANDed with a NOR gate.

The input expressions, Io and I 1, which define the inputs

to cells Co(B ) and CI(B ), respectively, may be obtained from lines

6, Z8, and 29 of Table B. 1:
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8

Co(W)

b CoCW)

GI(W)

D I

G_(W)
ALL WAFFERS ON

GOMMON SHAFT

8 D 2

G2(W)

FIGURE B.I- SAMPLE TIME PROGRAMMING SWITCH
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i0 : sis(B)G

11 : S15 (B) _ US0(B ).

G is defined to equal "one" when the count in rW equals the sample

time switch position number. Control signal SIZ ? (MR) does not

appear in the above expressions because it is generated by the over-

flow from rM which supplies the shift command.

Now note that

sis (B)T0

Therefore I 0 = S15(B ) G,

and 11 = SIs(B)T0 U S0(B )

If we let D O , D

time switch, we obtain

and

1' DZ denote the three outputs from the sample

The complements of I 0 and I 1 are also required for inputs to the

shift register, and so the circuit was instrumented as shown in

Figure B. 2.

The control signals P03 and P04

and P04 =

P03 =

are defined as follows:

S O (MR) US 1 (MR) U S 2 (MR)

S O (MR) U S 1 (MR) U S 2 (MR) U S 3 (MR).

10 = SI5(B ) D O D 1 D 2

I 1 = SI5(B)T O U S0(B )
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D I

SO(B)o IL_

FIGURE B.2- rB FEEDBACK GATING

S6(MR) 0 (rM OVERFLOW) ::_ _P04

GI(MR)O _ _Po3_Po_"

CO(.R,o__ _ _ _Po,

c,cM.)o___T__ .- _ _ _s_._

FIGURE B.3- SEQUENTIAL CIRCUIT FOR REALIZING
MISCELLANEOUS CONTROL SIGNALS
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In other words, P03 is a signal which switches to "one" when rM

clears to zero and remains at "one" for three microseconds;

P04 switches to "one" when rM clears and remains at "one" for

four microseconds. The use of these signals will become clear

in the following sections.

The above functions, as well as Sz(MR) , were realized

with a sequential circuit to save combinational gating and to avoid

the hazards present in a combinational circuit.

The sequential circuit is shown in Figure B. 3. Both flip-

flops are set when rM overflows, i. e. , when S0(Mp)-_rM R. The

fact that these flip-flops are reset at the appropriate time to real-

ize P03 and P04 may be easily verified.

The control logic is now shown in detail in Figure B. 4.

The implementation of the registers should be clear from the des-

cription of the circuits in Appendix A. The four megacycle mas-

ter oscillator is gated with two NOR gates connected as a set-

reset flip-flop in order to obtain reliable operation in the event

of contact bounce when the stop-run switch is thrown.

B. 3 Programmable Diode Matrix

The programmable diode matrix that was used is manu-

factured by AMP, Incorporated. It realizes the circuit shown in

Figure B. 5. The resistors and output diodes are mounted ex-

ternal to the matrix. The programming diodes are mounted in



_E "_ _ _._ _

0

_J

0

k-

Z

0

hi

I--

I,I

I

W
n"



• 156

OUTPUT

i

9 PLACES b , i_ , ,

.e C Dt E ©' G' H

ol°IC

2

150

I

•1
I
I
I
I
I
I
I

[

I-

I

!
I
I
I
I
I
I
I
I

R, 8.2 K
DIODES: IN456

FIGURE B.5- PROGRAMMABLE DIODE MATRIX
CIRCUIT



157

pins so that the location of diodes in the matrix can be conven-

iently changed by removing or inserting these pins.

The numbered rows were used as inputs and were driven

by rB. Therefore, only outputs were taken from the lettered

columns. A given output will be "zero" only if a pin is present at

the intersection of this output column with the input row that is at

zero volts. Since the outputs are defined to represent the com-

plements of the indicated variables, a binary "one" is represented

in the matrix by the presence of a diode pin.

The diodes that are in series with the output (called output

diodes above) are present to offset the voltage drop across the

diodes in the matrix. This ensures that the output will be ade-

quate to turn off a transistor.

The physical appearance of the diode matrix may be

clearly seen in the photograph of the compensator, Figure 1.4,

B. 4 Operational Multiplie r

The operational multiplier gating is illustrated in Figure

B. 6. Recall that f is the input to rM and C0(M ) ..... C6(M ) are

the seven initial stages of rM. Kil ..... Ki7 are the seven digits

which specify the magnitude of the weighting constant, K i. Kil

carries a weight of Z -1, Ki2 carries a weight of 2 .2 , etc. The

diode matrix (see previous section) supplies the signals,

Kil' .... 1_i7 directly, with no need for inversion. BYPASS is

a signal which is also programmed into the diode matrix. A
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FIGURE B.6- OPERATIONAL MULTIPLIER GATING
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programming constraint which must be obeyed is that BYPASS

can be programmed to equal "one" only if all the variables

Kil, ..., Ki7 are programmed to equal "zero".

The output is obviously given by:

7-

K.fl = j=IU K..IjPCj.I(M ) U (BYPASS) PT"
(B. 1)

(Px is a pulse which occurs when x switches from "zero" to "one"

where x is any Boolean variable. ) If BYPASS = 1, K.. = 0 by defi-
1j

nition, and therefore K.fl = I_ ; the output frequency equals the

input frequency f. (To save notation, the same symbol is used

for a Boolean variable and its frequency in this section. ) When

BYPASS = 0, the output is:

7

K.f = U Kij PC j_j=l 1(M)

Since Cj_I(M ) is the (j-l)st stage of a binary counter which is in-

cremented with an input signal of frequency f, PCj_I(M ) is of fre-

quency f/Z j. Furthermore, since only one stage of a binary

counter switches from "zero" to "one" each time it is incre-

mented,

time ;

joint.

all the pulses in the signals PCj_I(M) are distinct in

i. e. , the Boolean variables PC are mutually dis-
j_l (M)

The output frequency is therefore:

7 7
f i

K.. ---,-- = f Z K...2-"

j=l 1j 2j j= 1 12
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where K.. is now viewed as a real number equal to zero or one.
lj

This last summation is just the definition of the constant K.. The
1

output frequency is therefore K.f.
1

The delay in two of the input legs is required to keep the

pulses from these two inputs from running together with the pulse

from the last input (input _)). Since the inputs come from a

transition coupled binary counter, C6(M ) will change about 7(25) =

175 nanoseconds after the counter receives an input while C0(M )

changes about 25 nanoseconds after receipt of an input. Since the

output pulses are eighty nanoseconds wide, the pulses would not

be sufficiently separated in time to be distinguished by a counter

without the added delay elements.

B. 5 Processin_ the Sign Bit

The sign of the product of a weighting constant and past

input or output is held in a flip-flop, Sp. The input to this flip-

flop, Isp, defines the sign of the product at the instant it is

clocked into Sp.

Each time rB changes state, a new constant is gated into

the operational multiplier and a new value for the sign of the pro-

duct must be transferred into Sp. The transfer is executed by

S2(Mp_ ) , a control signal which changes to "zero" two micro-

seconds after the clock transition which causes rB to change

state. The two microsecond delay is sufficient for rB to change

state, for the sign bit output of the diode matrix to settle, and for
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ISp to stabilize. Two additional microseconds must then be

allowed for the forward and backward command levels within

the bidirectional counter to stabilize before the operational mul-

tiplier output is gated into rA.

The sign bit, therefore, is not actually located in the

first bit position of each word. The first bit position is not

used; the second position holds the sign bit, and the third posi-

tion is also blank. The fourth position contains the first bit of

the magnitude of the word. The sign was actually written into

the first three positions, however, so that the control signal

P03 (see Section B. 3) could be used to define the times at which

the sign was to be written°

The expression for ISp may be obtained by inspecting

those lines in Table B. 1 which define a transfer into Sp. We

obtain:

Isp = (S K @ R)- SI5_M(B ) u (sK ¢ R).SlS_M(B)._V_ u

(sE aSK). SlS_M(B). SI(W). (B.2)

The control signal SI(MR) does not appear in the expression be-

cause this ANDing operation is performed by clocking Isp into

Sp when SI(MR) = I.

Equation B. 2 may be decomposed into two equations:

Isp = S K _ X (B. 3a)
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where X = R (_W] U SiS_M¢B)) U S_. Sl(W)- SlS_M(B).

(B. 3b)

These equations were instrumented as shown in Figure B. 7. The

ring sum was instrumented as suggested in reference 16 since

the asserted forms of S K and X are not required for this instru-

mentation.

B. 6 Accumulator Design

The accumulator is a two's complement bidirectional

counter with positive numbers represented by "zero" in the sign

bit. Two's complement representation for negative numbers was

selected since this form yields the simplest counter and is ideal

for direct conversion to analog form (see Appendix D). The coun-

ter accepts a single count input and has two inputs, F A and B A,

which define whether the counter should count forward or back-

ward.

The number of bits in rA was selected so that it could

never overflow at any time during a computation cycle. The

maximum number of counts rA will ever have to accept is:

[3XlZT+(IZ7- 15)] ×15×8=59,160.

The number in brackets equals the maximum number of counts

that rA must accept while accumulating a single product. Up to

fifteen products may be formed in a single iteration of the com-

putation cycle, and there are up to eight iterations. The product
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of these numbers, therefore, equals the maximum count. It fol-

lows that seventeen bit counter was needed, including one bit for

the sign.

The accumulator is shown in Figure B. 8. The small

resistors in series with the flip-flop outputs are necessary to

isolate the flip-flops from the stray capacitance associated with

cabling and the gain switch.

The extra trigger inputs on the first six stages are used

for the count input to rA R, the counter defined by those stages of

rA which are used for the output and the stages of rA which lie

to the right of the output stages. It is rA R which must be counted

toward zero in order to insert Yn into the delay line, not rA.

The gain switch is used to select the proper trigger input, as

well as the proper output stages.

B. 7 r A Trigger In_ Gating

The trigger input to rA is obtained by examining those

lines in Table B. l which define when rA is to be incremented

with the operational multiplier output, K.f. As explained in $ec-
1

tion B. 5, the input should remain blocked until four microsec-

onds after rB enters a new state. The control signal P04 is used

to perform this function. The input is:

"TA= P04 [_'_" Si5'M(B} " (Kif)'R U

Sl5_M(B) S 1 (W) 1_- • U• " e (Kif)

SlS_M(B)• h--C • R-(Kif)]
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We write T A since we wish to have an expression which is nor-

really at the "one" level and rises to "zero" when K.f = 1.
1

The expression was instrumented as shown in Figure

B. 9. K.f was not factored out of the expression so that a pulse
1

from the operational multiplier would have to probagate through

two additional gates. This helps insure that the control level

P04 will set up the gating before the output of the multiplier in-

fluences the output of the circuit.

Note that E and R are clocked into flip-flop's before
e

they are applied to the combinational gating° This was done since

the output of this gating must be defined by their value at the time

a clock transition occurs, not the value they change to. When

C M switches to "zero", E and R are transferred into the flip-e

flops and set up the gating before any pulse from the multiplier

arrives. In other words, the delay through the operational mul-

tiplier gating was designed to be longer than the time required

to transfer E and R into the flip-flops.
e

B. 8 Directional _ for rA

The count forward (FA) and count backward (BA) com-

mands to rA are defined not only by Sp, but also by SA, the

sign of rA. These levels are defined by S A while Yn is being

written into memory. We conclude from Table B. 1 that

F A = So(B) • SA U _-_ " _

and B A = _A
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FIGURE B.IO- DIRECTIONAL GATING FOR rA
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The instrumentation is shown in Figure B. 10.

B. 9 Gai.__.__nProgramming Switch

The function of the gain programming switch is three-

fold:

1. It selects the stages of rA that will be used for the

output, Yn"

Z. It selects the proper trigger input for the master

clock which counts rAR toward zero as Yn is
inserted into memory.

3. It selects the stages of rA which will serve as
inputs to the gating that forms the function A

(rA R empty), e

The switch is shown in Figure B. 1 1. The inputs

A 0 ..... All are taken from the first twelve stages of rA

through small isolation resistors. The outputs C0(Y ) .....

C6(Y ), define the seven bit magnitude of Yn" The outputa

TA0, .... TA5, are the trigger inputs to the first 6 stages of

rA. The outputs F 1, ..., F 5 are inputs to the combinational cir-

cuit that generates A .
e

B. 10 Combinational Circuit for A e

A is defined to be true whenever the count in rA R ise

Obviously, rA R is not zero if any cell in rA K contains

15

= U C. (A U SA,
e K-1 1

Therefore,
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where K is the gain setting. Since the first seven stages of rY

are equal to the first seven stages of rA R, we may write the

above expression as:

115= C. (Y U U C. (A U SA
e _ 0 x =6+K I

Since Ci(A ) is logically equivalent to A. forI

amination of Figure B. I l will show that

II 5

U C.(A) = U F.
i= 6+K x i= I x

i=0, 1..... Ii, ex-

(An open circuit corresponds to binary "zero" on a gate input. )

We therefore have

L15U U C. (A U S A-
=IZ 1

The circuit is illustrated in Figure B. 12.

B. 1 1 Saturation Gating

In the event the compensator saturates, the compensa-

tor should supply the maximum output to the hold circuit° Also,

it was decided that the compensator should supply a visual indi-

cation if saturation ever occurs.

In addition to deriving the logical expressions for per-

forming the above functions, the equation for clearing rA before

the start of a new computation will be derived in this section.

Some of the gating may then be shared between these expressions.
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Ideally, if the compensator is saturated, it should trans-

fer the maximum output to rH at the same time it would normally

execute the transfer, i.e., at line 3 of Table B.I. This, how-

ever, would require an additional combinational circuit on the

output of rA to detect saturation. Also, the proper stages of rA

would have to be switched to the input of this circuit. All of this

gating can be eliminated by waiting until rA R has been read into

memory to find out if saturation has occurred. If rA R is not zero

after having been counted down by the delay line clock, we know

that the compensator has saturated. In other words, we can use

A to define when rA R is zero and when the compensator is sat-e

urated. The only penalty we must accept is that the servo is

driven in the proper direction by less than the maximum signal

for not more than I/16 of the time.

Saturation is therefore handled in the following manner:

I. Transfer rY to rH when rB enters state S0(B )
whether or not saturation has occurred (line 3

of Table B. I).

Z. If A is still "zero" when rB enters state SI(B ),
thenechange the contents of rH to its maximum

value (lines 8 to 9 of Table B. i).

DC set and reset inputs of the flip-flops in rH are

CO (MR)" _'A

C 0 (M R) • SA •

The

used to execute step 2.

set (SH) and reset (RH) inputs are defined by:

SH = SI(B ) • SI(W ) • X P0e 3

and RH = SI(B) " SI(W) " _e P03 "

Lines 8 and 9 of Table B. 1 show the
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where P03 CO (MR) is a one microsecond pulse which is switched

to "one" by C M when rM R is in state S O (MR). The set and reset

pulses are, therefore, one microsecond wide. It is tempting to

omit C0(MR) and only use P03' a three microsecond pulse. If

this is done, however, false set and reset signals will occur be-

cause P03 changes before rB changes state.

An indicating flip-flop was used to remember that satura-

tion has occurred; its input is:

R H

Finally,

U S H = SI(B ) • SI(W) • A e P03 C0(MR)"

rA must be cleared at the start of each new

computation cycle after rH has been adjusted (line 10 of Table B. 1).

The clear command, C L, is :

CL = SI(B) " SI(W)" _[e i503 P04 '

where we have used the fact that P03 P04 = $3 (MR)" The cir-

cuits were instrumented as shown in Figure B. 13.

B. lZ Serial Memory

The serial memory is a magnetostrictive delay line manu-

factured by the Computer Control Company, Inc. All read-write

circuitry is included with the memory. The input is a combina-

tional circuit consisting of four expandable three-input AND gates

which feed an OR gate• An extra input to the OR gate is also pro-

vided for expanding the input circuit. The output of the OR gate
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(which we shall call W) is clocked into the delay line.

The output of the delay line is a flip-flop which is set by

the clock if the output of the delay line is "one"; the flip-flop is

reset if the output is "zero". The memory is, therefore, logi-

cally equivalent to a large shift register.

Input and output logic levels are zero and -6 volts. The

memory is clocked at one megacycle and has a delay time of 1920

microseconds. Therefore, it can store 19Z0 bits. The logic sym_

bol suggested by Computer Control Company for the memory is

shown in Figure B. 14.

B. 13 l_emory In_

The input to the write amplifier, W, may be read from

Table B. 1:

Po3 [ S0(B)

ISo3 -

Po3 "

SA U S15_ivI(B ) • S l(W) • SE] U

S0(B) " _ e U _" S15_M(B ) • R U

S15_M(B ) • SI(W)'_ e U S15_M(B) "_" _ •

The input gating supplied with the memory unit may be used to

realize most of this function. Only the function W 1 given by:

W l = P03 "

P03

had to be instrumented.

S15_M(B) " SI(W) " S E

S15.M(B) " SI(W) " ]_ e

W 1 was factored to give

U

R.
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wl = SlS-M(B)"SI(W)" [P03SE U 9O3

The gating is shown in Figure B. 15.

B. 14 In_-

The

log to digital

1.

Output Timing Signal s

compensator must supply three signals to the ana-

converter (see Appendix E):

The complement of the master clock which is used
to count the error toward zero as it is read into

memory.

2. A signal _ which controls when the error is to be
read.

3. A track command level, T L, which controls when
the converter is to track the analog error input.

The restrictions on the two timing signals are explained

in Appendix E. When 1_ E switches to "zero" it opens a gate which

allows the master clock, C M, to count rE toward zero. Since rE

is to be incremented by C M only when the magnitude of the error

is being loaded into memory, we have:

R E = SI5_M(B ) • S1 (W) " _03

When switching from the track mode to the read mode,

T L must change at least two microseconds before R E changes.

A control signal which satisfies this requirement is SI5_M(B ).

We can therefore identify T L with SI5_M(B ) :

TL = SIS_MCBI

In other words, the converter will continuously track the error

except when rB enters state SI5_M(B ).
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A transfer into the zero-order hold is performed by

first clearing the hold register, rH, and then executing the trans-

fer. "One" to "zero" transitions are used to perform both of

these operations. It should be clear from lines Z and 3 of Table

B. 1 that the following signals will supply the required transi-

tions:

TRANSFER = S0(B ) • SZ (MR)

GX.m .

The logic diagrams are shown in Figure B. 16.



APPENDIX C

ANALOG SIMULATOR

The analog simulator merely consists of five operational

amplifiers which have their inputs and outputs brought out to five-

way binding posts. The analog dynamics of the closed loop is

simulated in real time by closing the amplifier loops in the ap-

propriate manner. No provisions were made for setting in initial

conditions since the response of the control loop to various initial

conditions was of no interest. A stable closed loop will automati-

cally drive all variables to zero and then the test inputs can be

applied.

The operational amplifier circuit is shown in Figure C. 1.

The open loop gain of the amplifier is well in excess of 1,000 and

is fairly independent of load. The gain-bandwidth product when

operated with a 10K or smaller input resistor is approximately

500 KC.

The differential input stage (transistors Q1 and Q2) are

biased at 40 microamperes. This results in a nominal input base

current of 0.5 microamperes. This current must either be sup-

plied by the driving source or by an external biasing network at

the base of transistor Q 1"

The input stage is followed by two grounded emitter

stages and an emitter follower. The emitter follower is biased

179
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at 5.5 milliamperes which enables the amplifier to comfortably

drive two milliamperes at +_l0 volts (corresponding to a 10K

load). The full 5.5 milliamperes are not available for load cur-

rent since the 3.3K emitter resistor must also be driven.

Smaller loads may be driven at lower output voltages. In using

the amplifier one must remember that both the feedback network

and the next circuit contribute to the load.

The diode from the base of Q1 to ground is necessary to

prevent the amplifier from latching into a saturated state. It

behaves as an open circuit at the small voltages that are present

at the base under r_Srmal operation.

The 820 pf feedback capacitor is required to prevent high

frequency oscillations. The large capacitors across the power

supplies are needed to stiffen the supply voltages. Even though

the power supply r_ay have a large filter capacitor, the induc-

tance present in a few feet of wire from the power supply to the

circuit can cause ringing and possibly instability°

In using the amplifier, input D should be used as the

summing point. Input F merely serves to provide a convenient

summing resistor. The 1K potentiometer is used to zero the

output at ground.



APPENDIX D

ZERO-ORDER HOLD

The zero-order hold network consists of a flip-flop

register (rH) which drives a digital to analog converter as shown

in Figure D. 1. The digital input is transferred into this register

in parallel. A "1" to "0" transition is first applied to clear rH

to all "ones" and then the transfer is executed. The DC set and

reset inputs, SH and RH, are used to perform the transfers

÷ 127-_rH and - 128---_rH respectively, if the compensator

satur ate s.

The digital to analog converter is shown in Figure D. 2.

This converter must be operated with a 12K load to ground (or

to the virtual ground at the input of an operational amplifier) in

order to maintain the proper bias and impedance levels.

Except for a different bias level,

tical to the one analyzed in reference 29.

sion for the output voltage is:

where d o

this decoder is iden-

The resultant expres-

RI 27 26
e0 = 13 -3.-72 (d7 + d6 + "'" + d0Z0) (D.I)

is the least significant bit (LSB) and d 7 is the sign bit

of the digital input. The converter will automatically produce

opposite polarity voltage swings with plus and minus inputs with

two's complement coding, provided positive numbers are

182
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represented by "one" in the sign bit. A digital input of 0 (repre-

sented by 1000000) then results in the output:

e0[ = 13 -(2/3) RI. (D. 2)

0 input

This is the DC level about which the output will vary. A digital

input of +1 (represented by 10000001), for example, yields

Z RI) -_m (!/27), (D. 3)e0[ = (13"T -
+ 1 input

while an input of -I (represented by 01111111) yields

2 •27 -1

= 13-
eo[ (D. 4)

1 2 RI) volts
It is obvious that one quantum is represented by y (

and that an inversion is present. (A positive input results in a

negative output swing. ) This inversion is used to good advantage

in the analog to digital converter (Appendix E). There is no net

inversion in the hold network, however, since the D/A converter

is followed by an analog amplifier which yields another inver-

sion. The amplifier is used to lower the output impedance of the

circuit and to remove the seven volt DC level on the output of the

D/A converter.

In equation (D. 1), a flow of current has been associated

with a binary "one". Examination of the current source in Fig-

ure D. 2 will show that an output current will flow in the grounded
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base transistor (transistor QZ) when Q1 is cut off, i.e. , when

the input is at zero volts. Binary "one" must therefore be identi-

fied with zero volts. Since this is opposite to the convention that

has been established for the input data, the 0 side of rH must be

used to drive the converter except for the sign bit, because the

sign bit convention has also been defined opposite to the input

data.

The current sources supply a nominal current of 1.73

milliamperes. Each source must be tuned with the 1K potentio-

meters to provide a 50 millivolt per quanta output over the entire

input range. The procedure to be followed is explained in detail

on pages 54-57 of reference I. After this has been done, any off-

set voltage on the output may be removed with the bias adjustment

in the amplifier.

A photograph of the zero-order hold module may be seen

in Figure D. 3.
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APPENDIX E

ANALOG TO DIGITAL CONVERTER

A converter which continuously tracks the analog input

was designed to convert the analog error to digital form. The

maximum input is + 6.35 volts corresponding to + 127 quanta at

50 millivolts per quantum. The digital output is in two's comple-

ment representation.

The basic configuration is shown in Figure Eo 1. The

analog representation of the number stored in the bidirectional

counter is continuously compared with the analog input. If these

two voltages are equal to within + 1- _- LSB (Least Significant Bit),

the count input to the counter is inhibited. If the analog input is

larger than the counter contents, the clock counts the counter

forward; if smaller, the counter is counted backward.

This type of converter was selected mainly because the

digital output appears in a bidirectional counter. The output may

therefore be read by inhibiting the clock and accumulating the

number of pulses required of an external clock to return the coun-

ter to zero. This is exactly the type of readout required by the

digital compensator; the counter is counted down with the delay

line clock as "ones" are simultaneously inserted into the serial

memory.

This type of converter is not popular commercially since

the conversion time is large ff the analog input is suddenly

188
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changed by N quanta° NT seconds are required to count the

counter up to the new value, where r is the clock period. It is

also obvious that the converter cannot follow an input which

changes faster than 1/_ quanta/second. These are not severe

disadvantages in the case at hand, however, since the compensa-

tor will not interrogate the converter until at least 1.92 milli-

seconds have elapsed since the last sample° The converter,

therefore,has 1.92 milliseconds to count from zero to the value

of the analog input. In this case, T is 8 microseconds and the

maximum analog input is 127 quanta. Only 1. 016 milliseconds

are required to encode the m_irnurn input.

The converter does suffer somewhat when step inputs

are applied to the closed loop. If a step change is applied just

before the converter is interrogated, insufficient time may elapse

for conversion. The rise time of the converter, however, is

small as compared to the rise time of a fast 20 cycle per second

servomechanism. In response to a step input of 127 quanta, an

analog system with a dominant time constant of 8 milliseconds

(corresponding roughly to a 20 cycle per second break frequency)

will only change about 127 (. 63) = 80 quanta in 8 milliseconds or

10,000 quanta/second. The rise time of the converter is

1

8×10_6 = 125000 quanta/second. The converter rise time is

therefore small compared to the rise time of a 20 cycle per sec-

ond servo. For step inputs of less than thirty quanta, the con-

verter response time is truly negligible.
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The converter is shown in detail in Figure E.Z. The

two combinational circuits and the functions they realize are

shown in Figures Eo 3 and E. 4. The BDC (Bidirectional Coun-

ter) has two trigger inputs, C 1 and C 2, and is identical to the

counter described in Appendix B except that it has eight stages.

The output of the comparator consists of two binary

outputs which define whether the BDC is to count forward

(F c = 1, Bc = 0)-, backward (F c = 0, Bc = 1); or not at all

(F c = Bc). Since these levels may change at any time, they are

transferred (at the leading edge of the clock pulse) into two buf-

fer flip-flops two microseconds before the BDC is to be incre-

mented. This ensures that the forward (F) and backward (B)

levels for the BDC do not change during the two microseconds

preceding a count input. These levels must not be allowed to

change during the two microseconds preceding a count input

since this much time must be allowed for the levels within the

counter to stabilize (see Appendix A).

The outputs of the buffer flip-flops are also used to

inhibit the BDC input trigger whenever F B = B B. Equality is

used as the inhibiting criteria instead of the simpler condition:

F B = 0, B B = 0. Then if noise on the inputs to the comparator

should ever result in the forbidden state: F B = 1, B B = 1, the
#

counter will not be incremented. The trigger is also inhibited
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whenever the contents of the counter tends to exceed

+ 127 (F El+ = I) or - IZ7 (B El_ = I).

The two input levels T L and _E define whether the con-

verter is in the tracking mode or read mode. When T L (track

command level) is true and R E (read level) is false, the conver-

ter will continuously track the analog input. When T L = 0 and

R E = 1, the BDC will be counted to zero by the external clock

_M" If TL= 0 and R E = 0, the contents of the BDC will remain

constant; the input T L = 1, R E = 1 is not allowed. When switch-

ing from the track mode to the read mode, the level T L must be

changed at least two microseconds before R E is changed. Again,

this must be done to ensure that the forward and backward levels

into the BDG stabilize two microseconds before a count input is

received.

A "one" to "zero" transition of the internal clock trig-

gers the BDC with a "one" to "zero" transition of the counter

input C 1 (provided the other levels are satisfactory) and resets

the two buffer flip-flops. This prepares the flip-flops for accept-

ing the comparator output at the leading edge of the next multi-

vibrator pulse and performs one other important function: re-

setting the buffer flip-flop returns the counter input C 1 to "one"

and holds it there. This occurs before any static or dynamic

hazards in the feedback gating can cause erroneous triggering of

the BDC.
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The usual trailing edge triggering is used for the other

trigger input. The control level _E must therefore be changed

while _'M equals 1 in order to prevent false triggering of the

counter. This type of triggering could not be used for the other

input since the control level T L is not synchronized with the

internal clock of the converter. Changes in this level could

therefore trigger the counter.

Three flip-flops and lights were used to indicate vari-

ous states of the converter. The two flip-flops which are trig-

gered by the read command tell whether the output is zero, posi-

tive, or negative at the time the converter is interrogated. The

other flip-flop is triggered by the internal clock and indicates

whether the output ever reaches saturation (+- 127).

The comparator is shown in Figure E. 5. Since there is

an inversion through the D/A converter, the comparison is per-

formed by summing its output with the analog input. This is

done with the first amplifier. The 30.9K resistor to -18 volts

is used to remove the bias level present on the D/A output. The

input and output of the second amplifier then vary about zero volts.

The second amplifier is a wide-bandwidth amplifier which is used

for gain only. The threshold circuit detects when the amplifier

output exceeds +- 1 volt. Since a difference of +- 25 millivolts

( +- ½ LSB) must be detected, a gain of 40 is needed.
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It may appear that one amplifier could be used to per-

form both the addition and gain functions. However, the George

A. Philbrick P-4S amplifier does not have the necessary gain-

bandwidth product if its input resistor is increased to 12 K as

required by the D/A converter. The amplifier of Figure C-1

does have the necessary bandwidth at this impedance level when

operated at unity gain.

The silicon diodes are used to keep the amplifiers out

of saturation and hence increase the comparison speed. The

diodes appear as open circuits over the voltage range of interest.

If the signals tend to become large, however, the gain of the

amplifiers is automatically reduced, limiting the output.

The threshold circuit is shown in Figure E. 6. The

emitters of transistors Q1 and Q2 are biased at - 0.9 and ÷ 0.9

volts, respectively, by the silicon diodes. These transistors

are therefore cut off, as are the output transistors, while the

input lies within _ 0.9 volts. When this voltage range is ex-

ceeded, one of the transistors will conduct and drive current

through the tunnel diode which is connected to its collector.

When the peak current of the tunnel diode is exceeded {at about

one volt input}, it switches to its high voltage state, saturating

an output transistor. Thus, three distinct states are obtained

for controlling the BDC.
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When large transients are introduced by switching the

D/A converter, four microseconds are required for the ampli-

fiers to stabilize. Two microseconds were allowed for the

threshold circuit to stabilize. Two more microseconds were

needed for the forward-backward levels in the BDC to stabilize.

These time delays account for the eight microsecond clock

period.

The clock is shown in Figure E. 7. Figure E. 8 is a

photograph of the A/D converter.
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